Suppr超能文献

应答驱动抽样与同质性配置图。

Respondent-driven sampling and the homophily configuration graph.

机构信息

Fellows Statistics, San Diego, California.

出版信息

Stat Med. 2019 Jan 15;38(1):131-150. doi: 10.1002/sim.7973. Epub 2018 Sep 26.

Abstract

Respondent-Driven Sampling (RDS) is a popular method for surveying hard-to-reach populations, especially in the public health domain. Adjusting for the complex sampling mechanism of the RDS procedure is challenging. We propose a new model for the RDS mechanism motivated by a graph model, which we call the Homophily Configuration Graph. Under this model, we develop a new estimator for population proportions that is robust to seed bias, differential activity, differential recruitment and short recruitment chains. We also connect it to existing RDS theory by showing that, if the sample fraction is small, our estimator limits to the popular Salganik-Heckathorn estimator. We perform simulation studies on both empirically observed networks and networks with known statistical properties, suggesting that this new estimator has less bias than currently recommended estimators.

摘要

响应者驱动抽样(RDS)是一种调查难以接触人群的流行方法,特别是在公共卫生领域。调整 RDS 程序的复杂抽样机制具有挑战性。我们提出了一种新的基于图模型的 RDS 机制模型,我们称之为同配构型图。在这个模型下,我们为人口比例开发了一个新的估计量,该估计量对种子偏差、不同的活动、不同的招募和短的招募链具有鲁棒性。我们还通过表明,如果样本分数很小,我们的估计量限制在流行的 Salganik-Heckathorn 估计量,将其与现有的 RDS 理论联系起来。我们对经验观察到的网络和具有已知统计特性的网络进行了模拟研究,表明这种新的估计量比目前推荐的估计量具有更小的偏差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验