Suppr超能文献

内部梯度分布:磁共振成像衍生张量提供的形态学特征。

Internal gradient distributions: A susceptibility-derived tensor delivering morphologies by magnetic resonance.

机构信息

Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel.

Centro Atómico Bariloche, CONICET, CNEA, 8400, S. C. de Bariloche, Argentina.

出版信息

Sci Rep. 2017 Jun 12;7(1):3311. doi: 10.1038/s41598-017-03277-9.

Abstract

Nuclear magnetic resonance is a powerful tool for probing the structures of chemical and biological systems. Combined with field gradients it leads to NMR imaging (MRI), a widespread tool in non-invasive examinations. Sensitivity usually limits MRI's spatial resolution to tens of micrometers, but other sources of information like those delivered by constrained diffusion processes, enable one extract morphological information down to micron and sub-micron scales. We report here on a new method that also exploits diffusion - isotropic or anisotropic- to sense morphological parameters in the nm-mm range, based on distributions of susceptibility-induced magnetic field gradients. A theoretical framework is developed to define this source of information, leading to the proposition of internal gradient-distribution tensors. Gradient-based spin-echo sequences are designed to measure these new observables. These methods can be used to map orientations even when dealing with unconstrained diffusion, as is here demonstrated with studies of structured systems, including tissues.

摘要

核磁共振是一种强大的工具,可用于探测化学和生物系统的结构。结合磁场梯度,它可以产生磁共振成像(MRI),这是一种广泛应用于非侵入性检查的工具。灵敏度通常将 MRI 的空间分辨率限制在几十微米,但其他信息源,如受约束的扩散过程提供的信息,可以使我们从微米和亚微米尺度提取形态信息。我们在这里报告了一种新方法,该方法还利用各向同性或各向异性扩散来感知 nm-mm 范围内的形态参数,基于磁化率诱导的磁场梯度分布。建立了一个理论框架来定义这种信息源,从而提出了内部梯度分布张量。基于梯度的自旋回波序列被设计用来测量这些新的可观测变量。这些方法可用于绘制取向图,即使在处理不受约束的扩散时也是如此,正如我们通过对包括组织在内的结构化系统的研究所证明的那样。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce2d/5468317/68ffb3ce86cb/41598_2017_3277_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验