Suppr超能文献

利用数据融合和回归方法生成模拟陆地卫星归一化植被指数(NDVI)图像的比较研究——以朝鲜半岛为例。

A comparative study on generating simulated Landsat NDVI images using data fusion and regression method-the case of the Korean Peninsula.

作者信息

Lee Mi Hee, Lee Soo Bong, Eo Yang Dam, Kim Sun Woong, Woo Jung-Hun, Han Soo Hee

机构信息

National Disaster Management Research Institute, Ulsan, South Korea.

Department of Advanced Technology Fusion, Konkuk University, Seoul, South Korea.

出版信息

Environ Monit Assess. 2017 Jul;189(7):333. doi: 10.1007/s10661-017-6034-z. Epub 2017 Jun 12.

Abstract

Landsat optical images have enough spatial and spectral resolution to analyze vegetation growth characteristics. But, the clouds and water vapor degrade the image quality quite often, which limits the availability of usable images for the time series vegetation vitality measurement. To overcome this shortcoming, simulated images are used as an alternative. In this study, weighted average method, spatial and temporal adaptive reflectance fusion model (STARFM) method, and multilinear regression analysis method have been tested to produce simulated Landsat normalized difference vegetation index (NDVI) images of the Korean Peninsula. The test results showed that the weighted average method produced the images most similar to the actual images, provided that the images were available within 1 month before and after the target date. The STARFM method gives good results when the input image date is close to the target date. Careful regional and seasonal consideration is required in selecting input images. During summer season, due to clouds, it is very difficult to get the images close enough to the target date. Multilinear regression analysis gives meaningful results even when the input image date is not so close to the target date. Average R values for weighted average method, STARFM, and multilinear regression analysis were 0.741, 0.70, and 0.61, respectively.

摘要

陆地卫星光学图像具有足够的空间和光谱分辨率来分析植被生长特征。但是,云层和水汽经常会降低图像质量,这限制了用于时间序列植被活力测量的可用图像的获取。为克服这一缺点,采用模拟图像作为替代。在本研究中,已测试加权平均法、时空自适应反射率融合模型(STARFM)法和多元线性回归分析法,以生成朝鲜半岛的模拟陆地卫星归一化植被指数(NDVI)图像。测试结果表明,加权平均法生成的图像与实际图像最为相似,前提是在目标日期前后1个月内有可用图像。当输入图像日期接近目标日期时,STARFM法能给出较好结果。选择输入图像时需要仔细考虑区域和季节因素。在夏季,由于云层影响,很难获得足够接近目标日期的图像。即使输入图像日期与目标日期不太接近,多元线性回归分析也能给出有意义的结果。加权平均法、STARFM法和多元线性回归分析的平均R值分别为0.741、0.70和0.61。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验