School of Physics, Universiti Sains Malaysia, 11800 Penang, Malaysia.
Environ Monit Assess. 2012 Jun;184(6):3813-29. doi: 10.1007/s10661-011-2226-0. Epub 2011 Jul 15.
Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.
大气校正对于多时相光学卫星图像是必要的,特别是在变化检测分析中,如归一化差异植被指数(NDVI)的比值。使用遥感技术进行突然的变化检测分析需要辐射一致性和大气校正,以实时监测地面。本研究使用了两种大气校正方法:相对辐射归一化和太阳光谱简化大气校正(SMAC)方法。使用来自马来西亚槟城岛的 1991 年至 2002 年期间的两组 Landsat 图像的多时相数据集来比较使用所提出的大气校正方法生成的 NDVI 地图。使用 PCI Geomatica 10.1 图像处理软件中的 ATCOR3_T 来检索地面温度(LST)。利用线性回归分析来分析 NDVI 和 LST 之间的关系。这项研究表明,通过检查线性相关系数,这两种所提出的大气校正方法都具有很高的准确性。为了检查通过线性回归分析获得的方程在每颗卫星图像中的准确性,随机选择了 20 个点。结果表明,SMAC 方法在从线性回归分析导出的方程中预测 NDVI 值时产生恒定值(就误差而言)。两种所提出的大气校正方法的误差(平均值)均小于 10%。