Suppr超能文献

基于 SPIRiT 重建的交错 EPI 扩散成像与虚拟线圈压缩技术。

Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

机构信息

Center for Biomedical Imaging Research, Department of Biomedical Engineering, Tsinghua University, Beijing, People's Republic of China.

Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA.

出版信息

Magn Reson Med. 2018 Mar;79(3):1525-1531. doi: 10.1002/mrm.26768. Epub 2017 Jun 12.

Abstract

PURPOSE

To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression.

METHODS

As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method.

RESULTS

Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts.

CONCLUSION

The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

摘要

目的

开发一种基于迭代自洽并行成像重建(SPIRiT)的新型扩散成像重建框架,用于多 shot 交错回波平面成像(iEPI),通过虚拟线圈压缩实现计算加速。

方法

作为自动校准并行成像的一般方法,SPIRiT 改善了传统广义自动校准部分并行采集(GRAPPA)方法的性能,因为具有自一致性的公式条件更好,这表明 SPIRiT 是基于 k 空间重建的更好候选者。在这项研究中,采用了一种通用的 SPIRiT 框架,将线圈灵敏度和相位变化信息合并为虚拟线圈,然后应用于 2D 导航 iEPI 扩散成像。为了减少使用大量线圈和 shot 时的重建时间,提出了一种新的 shot-coil 压缩方法,用于笛卡尔采样中的计算加速。进行了模拟和体内实验以评估所提出方法的性能。

结果

与传统的线圈压缩相比,shot-coil 压缩实现了更高的压缩率和更低的误差。模拟和体内实验表明,基于 SPIRiT 的重建优于现有方法,重新对齐了 GRAPPA,并提供了具有更少伪影的优质图像。

结论

基于 SPIRiT 的虚拟线圈压缩重建是高分辨率 iEPI 扩散成像的可靠方法。磁共振医学 79:1525-1531,2018。©2017 国际磁共振学会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验