Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts.
Department of Radiology, Harvard Medical School, Boston, Massachusetts.
Magn Reson Med. 2019 Oct;82(4):1343-1358. doi: 10.1002/mrm.27813. Epub 2019 May 20.
To introduce a combined machine learning (ML)- and physics-based image reconstruction framework that enables navigator-free, highly accelerated multishot echo planar imaging (msEPI) and demonstrate its application in high-resolution structural and diffusion imaging.
Single-shot EPI is an efficient encoding technique, but does not lend itself well to high-resolution imaging because of severe distortion artifacts and blurring. Although msEPI can mitigate these artifacts, high-quality msEPI has been elusive because of phase mismatch arising from shot-to-shot variations which preclude the combination of the multiple-shot data into a single image. We utilize deep learning to obtain an interim image with minimal artifacts, which permits estimation of image phase variations attributed to shot-to-shot changes. These variations are then included in a joint virtual coil sensitivity encoding (JVC-SENSE) reconstruction to utilize data from all shots and improve upon the ML solution.
Our combined ML + physics approach enabled R × multiband (MB) = 8- × 2-fold acceleration using 2 EPI shots for multiecho imaging, so that whole-brain T and T * parameter maps could be derived from an 8.3-second acquisition at 1 × 1 × 3-mm resolution. This has also allowed high-resolution diffusion imaging with high geometrical fidelity using 5 shots at R × MB = 9- × 2-fold acceleration. To make these possible, we extended the state-of-the-art MUSSELS reconstruction technique to simultaneous multislice encoding and used it as an input to our ML network.
Combination of ML and JVC-SENSE enabled navigator-free msEPI at higher accelerations than previously possible while using fewer shots, with reduced vulnerability to poor generalizability and poor acceptance of end-to-end ML approaches.
介绍一种结合机器学习(ML)和物理的图像重建框架,实现无导航自由的、高加速的多 shot 回波平面成像(msEPI),并展示其在高分辨率结构和扩散成像中的应用。
单 shot EPI 是一种高效的编码技术,但由于严重的失真伪影和模糊,不适用于高分辨率成像。虽然 msEPI 可以减轻这些伪影,但由于各 shot 之间的相位不匹配导致的相位失配,高质量的 msEPI 一直难以实现,这使得多 shot 数据无法组合成单个图像。我们利用深度学习获得最小伪影的中间图像,从而可以估计由于各 shot 之间的变化引起的图像相位变化。然后,这些变化被包含在联合虚拟线圈灵敏度编码(JVC-SENSE)重建中,以利用所有 shot 的数据并改进 ML 解决方案。
我们的 ML+物理联合方法使 R×多带(MB)= 8-×2 倍加速,使用 2 个 EPI shot 进行多回波成像,从而可以从 1×1×3mm 分辨率的 8.3 秒采集获得全脑 T 和 T*参数图。这也允许使用 5 个 shot 进行 R×MB=9-×2 倍加速的高分辨率扩散成像,具有高几何保真度。为了实现这一点,我们将最先进的 MUSSELS 重建技术扩展到同时多切片编码,并将其用作我们 ML 网络的输入。
ML 和 JVC-SENSE 的结合使无导航自由的 msEPI 能够以比以前更高的加速率实现,同时使用更少的 shot,降低了对较差泛化能力和对端到端 ML 方法较差接受度的脆弱性。