Suppr超能文献

通过协同机器学习和联合重建实现高速多 shot 回波平面成像。

Highly accelerated multishot echo planar imaging through synergistic machine learning and joint reconstruction.

机构信息

Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts.

Department of Radiology, Harvard Medical School, Boston, Massachusetts.

出版信息

Magn Reson Med. 2019 Oct;82(4):1343-1358. doi: 10.1002/mrm.27813. Epub 2019 May 20.

Abstract

PURPOSE

To introduce a combined machine learning (ML)- and physics-based image reconstruction framework that enables navigator-free, highly accelerated multishot echo planar imaging (msEPI) and demonstrate its application in high-resolution structural and diffusion imaging.

METHODS

Single-shot EPI is an efficient encoding technique, but does not lend itself well to high-resolution imaging because of severe distortion artifacts and blurring. Although msEPI can mitigate these artifacts, high-quality msEPI has been elusive because of phase mismatch arising from shot-to-shot variations which preclude the combination of the multiple-shot data into a single image. We utilize deep learning to obtain an interim image with minimal artifacts, which permits estimation of image phase variations attributed to shot-to-shot changes. These variations are then included in a joint virtual coil sensitivity encoding (JVC-SENSE) reconstruction to utilize data from all shots and improve upon the ML solution.

RESULTS

Our combined ML + physics approach enabled R × multiband (MB) = 8- × 2-fold acceleration using 2 EPI shots for multiecho imaging, so that whole-brain T and T * parameter maps could be derived from an 8.3-second acquisition at 1 × 1 × 3-mm resolution. This has also allowed high-resolution diffusion imaging with high geometrical fidelity using 5 shots at R × MB = 9- × 2-fold acceleration. To make these possible, we extended the state-of-the-art MUSSELS reconstruction technique to simultaneous multislice encoding and used it as an input to our ML network.

CONCLUSION

Combination of ML and JVC-SENSE enabled navigator-free msEPI at higher accelerations than previously possible while using fewer shots, with reduced vulnerability to poor generalizability and poor acceptance of end-to-end ML approaches.

摘要

目的

介绍一种结合机器学习(ML)和物理的图像重建框架,实现无导航自由的、高加速的多 shot 回波平面成像(msEPI),并展示其在高分辨率结构和扩散成像中的应用。

方法

单 shot EPI 是一种高效的编码技术,但由于严重的失真伪影和模糊,不适用于高分辨率成像。虽然 msEPI 可以减轻这些伪影,但由于各 shot 之间的相位不匹配导致的相位失配,高质量的 msEPI 一直难以实现,这使得多 shot 数据无法组合成单个图像。我们利用深度学习获得最小伪影的中间图像,从而可以估计由于各 shot 之间的变化引起的图像相位变化。然后,这些变化被包含在联合虚拟线圈灵敏度编码(JVC-SENSE)重建中,以利用所有 shot 的数据并改进 ML 解决方案。

结果

我们的 ML+物理联合方法使 R×多带(MB)= 8-×2 倍加速,使用 2 个 EPI shot 进行多回波成像,从而可以从 1×1×3mm 分辨率的 8.3 秒采集获得全脑 T 和 T*参数图。这也允许使用 5 个 shot 进行 R×MB=9-×2 倍加速的高分辨率扩散成像,具有高几何保真度。为了实现这一点,我们将最先进的 MUSSELS 重建技术扩展到同时多切片编码,并将其用作我们 ML 网络的输入。

结论

ML 和 JVC-SENSE 的结合使无导航自由的 msEPI 能够以比以前更高的加速率实现,同时使用更少的 shot,降低了对较差泛化能力和对端到端 ML 方法较差接受度的脆弱性。

相似文献

2
Echo planar time-resolved imaging (EPTI).磁共振成像中的时间分辨技术。
Magn Reson Med. 2019 Jun;81(6):3599-3615. doi: 10.1002/mrm.27673. Epub 2019 Feb 3.

引用本文的文献

7
Self-supervised learning for denoising of multidimensional MRI data.基于自监督学习的多维 MRI 数据去噪。
Magn Reson Med. 2024 Nov;92(5):1980-1994. doi: 10.1002/mrm.30197. Epub 2024 Jun 27.

本文引用的文献

3
k-Space deep learning for reference-free EPI ghost correction.k 空间深度学习用于无参考 EPI 鬼影校正。
Magn Reson Med. 2019 Dec;82(6):2299-2313. doi: 10.1002/mrm.27896. Epub 2019 Jul 18.
4
k -Space Deep Learning for Accelerated MRI.k-空间深度学习加速磁共振成像。
IEEE Trans Med Imaging. 2020 Feb;39(2):377-386. doi: 10.1109/TMI.2019.2927101. Epub 2019 Jul 5.
6
MoDL: Model-Based Deep Learning Architecture for Inverse Problems.MoDL:基于模型的深度学习架构用于反问题。
IEEE Trans Med Imaging. 2019 Feb;38(2):394-405. doi: 10.1109/TMI.2018.2865356. Epub 2018 Aug 13.
8
Learned Primal-Dual Reconstruction.学习原对偶重建。
IEEE Trans Med Imaging. 2018 Jun;37(6):1322-1332. doi: 10.1109/TMI.2018.2799231.
10
General phase regularized reconstruction using phase cycling.使用相循环的常规相重建。
Magn Reson Med. 2018 Jul;80(1):112-125. doi: 10.1002/mrm.27011. Epub 2017 Nov 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验