School of Physics and Technology, University of Jinan , Shandong 250022, PR China.
ACS Appl Mater Interfaces. 2017 Jul 19;9(28):23635-23646. doi: 10.1021/acsami.7b03673. Epub 2017 Jul 7.
Robust and highly active photocatalysts, CdS@MoS, for hydrogen evolution were successfully fabricated by one-step growth of oxygen-incorporated defect-rich MoS ultrathin nanosheets on the surfaces of CdS with irregular fissures. Under optimized experimental conditions, the CdS@MoS displayed a quantum yield of ∼24.2% at 420 nm and the maximum H generation rate of ∼17203.7 umol/g/h using NaS-NaSO as sacrificial agents (λ ≥ 420 nm), which is ∼47.3 and 14.7 times higher than CdS (∼363.8 μmol/g/h) and 3 wt % Pt/CdS (∼1173.2 μmol/g/h), respectively, and far exceeds all previous hydrogen evolution reaction photocatalysts with MoS as co-catalysts using NaS-NaSO as sacrificial agents. Large volumes of hydrogen bubbles were generated within only 2 s as the photocatalysis started, as demonstrated by the photocatalytic video. The high hydrogen evolution activity is attributed to several merits: (1) the intimate heterojunctions formed between the MoS and CdS can effectively enhance the charge transfer ability and retard the recombination of electron-hole pairs; and (2) the defects in the MoS provide additional active S atoms on the exposed edge sites, and the incorporation of O reduces the energy barrier for H evolution and increases the electric conductivity of the MoS. Considering its low cost and high efficiency, this highly efficient hybrid photocatalysts would have great potential in energy-generation and environment-restoration fields.
具有鲁棒性和高活性的光催化剂 CdS@MoS 通过在具有不规则裂缝的 CdS 表面上一步生长含氧富缺陷的 MoS 超薄纳米片成功制备。在优化的实验条件下,CdS@MoS 在 420nm 处的量子产率约为 24.2%,使用 NaS-NaSO 作为牺牲剂时的最大 H 生成速率约为 17203.7 μmol/g/h(λ≥420nm),分别是 CdS(约 363.8 μmol/g/h)和 3wt%Pt/CdS(约 1173.2 μmol/g/h)的约 47.3 和 14.7 倍,并且远远超过了所有以前使用 NaS-NaSO 作为牺牲剂的具有 MoS 作为共催化剂的光解水反应光催化剂。正如光催化视频所示,当光催化开始时,仅在 2 秒内就产生了大量的氢气气泡。高的氢气产生活性归因于几个优点:(1)MoS 和 CdS 之间形成的紧密异质结可以有效增强电荷转移能力并延缓电子-空穴对的复合;(2)MoS 中的缺陷在暴露的边缘位置提供了额外的活性 S 原子,而 O 的掺入降低了 H 演化的能量势垒并提高了 MoS 的电导率。考虑到其低成本和高效率,这种高效的混合光催化剂在能源产生和环境修复领域具有巨大的潜力。