Suppr超能文献

用于增强光催化析氢的金属1T相二硫化钼量子点/石墨相氮化碳异质结

Metallic 1T-phase MoS quantum dots/g-CN heterojunctions for enhanced photocatalytic hydrogen evolution.

作者信息

Liang Zhangqian, Sun Benteng, Xu Xuesong, Cui Hongzhi, Tian Jian

机构信息

School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

出版信息

Nanoscale. 2019 Jul 7;11(25):12266-12274. doi: 10.1039/c9nr02714a. Epub 2019 Jun 18.

Abstract

Recently, molybdenum disulfide (MoS) has been regarded as an efficient non-precious-metal co-catalyst for photocatalytic hydrogen (H) evolution, however, its inherent low-density active site and poor electron transfer efficiency have essentially limited its photocatalytic properties. Here we report that 1T-MoS quantum dots (QDs) can act as co-catalysts in assisting the photocatalytic H evolution to form heterostructures with g-CN nanosheets (denoted as 1T-MoS QDs@g-CN). Benefiting from the abundance of exposed catalytic edge sites and the excellent intrinsic conductivity of 1T-MoS QDs, an optimized 1T-MoS QD@g-CN composite (15 wt%) exhibits an extraordinary photocatalytic H evolution rate of 1857 μmol h g under simulated solar light irradiation, apparently 37.9 times higher than that of pure g-CN NSs (49 μmol h g). Meanwhile, the 1T-MoS QD@g-CN composites exhibit a good stability in the cyclic runs for the photocatalytic H production. The high efficient photocatalytic activity and stability of the 1T-MoS QD@g-CN composite is primarily attributed to the following reasons: (1) the introduction of 1T-MoS QDs results in a stronger light absorption capability in comparison with pure g-CN; (2) the tiny particle size of 1T-MoS QDs, in which edges and basal surface are catalytically active, provides a proliferated density of catalytically active sites; (3) 1T-MoS QD co-catalysts with metallic characteristics could act as efficient electron acceptors, which builds up a highly efficient pathway for photo-generated electrons from the CB of g-CN NSs to 1T-MoS and thus realizes rapid spatial charge separation. The improved light harvesting ability, increased catalytically active sites, as well as increased separation of charge carriers could be responsible for the improved photocatalytic H evolution. This work will provide new insight for the design and fabrication of smarter, cheaper and more robust artificial photocatalysts for photocatalytic H evolution.

摘要

最近,二硫化钼(MoS)被视为光催化析氢的一种高效非贵金属助催化剂,然而,其固有的低密度活性位点和较差的电子转移效率从根本上限制了其光催化性能。在此我们报道,1T-MoS量子点(QDs)可作为助催化剂辅助光催化析氢,与g-CN纳米片形成异质结构(记为1T-MoS QDs@g-CN)。受益于1T-MoS QDs丰富的暴露催化边缘位点和优异的本征导电性,优化后的1T-MoS QD@g-CN复合材料(15 wt%)在模拟太阳光照射下表现出1857 μmol h g的非凡光催化析氢速率,明显比纯g-CN纳米片(49 μmol h g)高37.9倍。同时,1T-MoS QD@g-CN复合材料在光催化产氢的循环运行中表现出良好的稳定性。1T-MoS QD@g-CN复合材料的高效光催化活性和稳定性主要归因于以下原因:(1)与纯g-CN相比,1T-MoS QDs的引入导致更强的光吸收能力;(2)1T-MoS QDs的微小粒径,其边缘和基面具有催化活性,提供了增殖的催化活性位点密度;(3)具有金属特性的1T-MoS QD助催化剂可作为有效的电子受体,为光生电子从g-CN纳米片的导带转移到1T-MoS建立了一条高效途径,从而实现快速的空间电荷分离。光捕获能力的提高、催化活性位点的增加以及电荷载流子分离的增加可能是光催化析氢改善的原因。这项工作将为设计和制造更智能、更便宜、更耐用的用于光催化析氢的人工光催化剂提供新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验