Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong, People's Republic of China.
Acc Chem Res. 2017 Jul 18;50(7):1702-1711. doi: 10.1021/acs.accounts.7b00150. Epub 2017 Jun 13.
The carbon-carbon bond activation of organic molecules with transition metal complexes is an attractive transformation. These reactions form transition metal-carbon bonded intermediates, which contribute to fundamental understanding in organometallic chemistry. Alternatively, the metal-carbon bond in these intermediates can be further functionalized to construct new carbon-(hetero)atom bonds. This methodology promotes the concept that the carbon-carbon bond acts as a functional group, although carbon-carbon bonds are kinetically inert. In the past few decades, numerous efforts have been made to overcome the chemo-, regio- and, more recently, stereoselectivity obstacles. The synthetic usefulness of the selective carbon-carbon bond activation has been significantly expanded and is becoming increasingly practical: this technique covers a wide range of substrate scopes and transition metals. In the past 16 years, our laboratory has shown that rhodium porphyrin complexes effectively mediate the intermolecular stoichiometric and catalytic activation of both strained and nonstrained aliphatic carbon-carbon bonds. Rhodium(II) porphyrin metalloradicals readily activate the aliphatic carbon(sp)-carbon(sp) bond in TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and its derivatives, nitriles, nonenolizable ketones, esters, and amides to produce rhodium(III) porphyrin alkyls. Recently, the cleavage of carbon-carbon σ-bonds in unfunctionalized and noncoordinating hydrocarbons with rhodium(II) porphyrin metalloradicals has been developed. The absence of carbon-hydrogen bond activation in these systems makes the reaction unique. Furthermore, rhodium(III) porphyrin hydroxide complexes can be generated in situ to selectively activate the carbon(α)-carbon(β) bond in ethers and the carbon(CO)-carbon(α) bond in ketones under mild conditions. The addition of PPh promotes the reaction rate and yield of the carbon-carbon bond activation product. Thus, both rhodium(II) porphyrin metalloradical and rhodium(III) porphyrin hydroxide are very reactive to activate the aliphatic carbon-carbon bonds. Recently, we successfully demonstrated the rhodium porphyrin catalyzed reduction or oxidation of aliphatic carbon-carbon bonds using water as the reductant or oxidant, respectively, in the absence of sacrificial reagents and neutral conditions. This Account presents our contribution in this domain. First, we describe the chemistry of equilibria among the reactive rhodium porphyrin complexes in oxidation states from Rh(I) to Rh(III). Then, we present the serendipitous discovery of the carbon-carbon bond activation reaction and subsequent developments in our laboratory. These aliphatic carbon-carbon bond activation reactions can generally be divided into two categories according to the reaction type: (i) homolytic radical substitution of a carbon(sp)-carbon(sp) bond with a rhodium(II) porphyrin metalloradical and (ii) σ-bond metathesis of a carbon-carbon bond with a rhodium(III) porphyrin hydroxide. Finally, representative examples of catalytic carbon-carbon bond hydrogenation and oxidation through strategic design are covered. The progress in this area broadens the chemistry of rhodium porphyrin complexes, and these transformations are expected to find applications in organic synthesis.
有机分子与过渡金属配合物的碳-碳键活化是一种很有吸引力的转化。这些反应形成过渡金属-碳键中间体,这有助于理解有机金属化学的基本原理。或者,这些中间体中的金属-碳键可以进一步官能化,以构建新的碳-(杂)原子键。这种方法促进了碳-碳键作为功能基团的概念,尽管碳-碳键在动力学上是惰性的。在过去的几十年中,人们做出了许多努力来克服化学、区域和最近的立体选择性障碍。选择性碳-碳键活化的合成用途已经大大扩展,并变得越来越实用:这种技术涵盖了广泛的底物范围和过渡金属。在过去的 16 年里,我们实验室表明,铑卟啉配合物有效地介导了张力和无张力脂肪族碳-碳键的分子间计量和催化活化。铑(II)卟啉金属自由基容易激活 TEMPO((2,2,6,6-四甲基哌啶-1-基)氧)及其衍生物、腈、非烯醇化酮、酯和酰胺中的脂肪族碳(sp)-碳(sp)键,生成铑(III)卟啉烷基。最近,已经开发了用铑(II)卟啉金属自由基断裂无功能和非配位烃中的碳-碳σ键。这些体系中没有碳-氢键的活化,使反应具有独特性。此外,铑(III)卟啉氢氧化物配合物可以在温和条件下原位生成,以选择性地活化醚中的碳(α)-碳(β)键和酮中的碳(CO)-碳(α)键。添加 PPh 可提高碳-碳键活化产物的反应速率和产率。因此,无论是铑(II)卟啉金属自由基还是铑(III)卟啉氢氧化物,对于激活脂肪族碳-碳键都非常有活性。最近,我们成功地证明了在没有牺牲试剂和中性条件下,用水分别作为还原剂和氧化剂,在脂肪族碳-碳键的还原或氧化中,铑卟啉可以催化反应。本账目介绍了我们在这一领域的贡献。首先,我们描述了活性铑卟啉配合物在氧化态从 Rh(I)到 Rh(III)之间的平衡化学。然后,我们介绍了在我们的实验室中偶然发现的碳-碳键活化反应及其随后的发展。这些脂肪族碳-碳键活化反应通常可以根据反应类型分为两类:(i)铑(II)卟啉金属自由基对碳(sp)-碳(sp)键的均裂自由基取代,和(ii)碳-碳键与铑(III)卟啉氢氧化物的σ键重排。最后,涵盖了通过战略设计进行催化碳-碳键加氢和氧化的代表性实例。这一领域的进展拓宽了铑卟啉配合物的化学,这些转化有望在有机合成中得到应用。