Suppr超能文献

铑催化 C-H 功能化反应的机理:理论研究进展。

Mechanism of Rhodium-Catalyzed C-H Functionalization: Advances in Theoretical Investigation.

机构信息

School of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400030, China.

出版信息

Acc Chem Res. 2017 Nov 21;50(11):2799-2808. doi: 10.1021/acs.accounts.7b00400. Epub 2017 Nov 7.

Abstract

Transition-metal-catalyzed cross-coupling has emerged as an effective strategy for chemical synthesis. Within this area, direct C-H bond transformation is one of the most efficient and environmentally friendly processes for the construction of new C-C or C-heteroatom bonds. Over the past decades, rhodium-catalyzed C-H functionalization has attracted considerable attention because of the versatility and wide use of rhodium catalysts in chemistry. A series of C-X (X = C, N, or O) bond formation reactions could be realized from corresponding C-H bonds using rhodium catalysts. Various experimental studies on rhodium-catalyzed C-H functionalization reactions have been reported, and in tandem, mechanistic and computational studies have also progressed significantly. Since 2012, our group has performed theoretical studies to reveal the mechanism of rhodium-catalyzed C-H functionalization reactions. We have studied the changes in the oxidation state of rhodium and compared the Rh(I)/Rh(III) catalytic cycle to the Rh(III)/Rh(V) catalytic cycle using density functional theory calculation. The development of advanced computational methods and improvements in computing power make theoretical calculation a powerful tool for the mechanistic study of rhodium chemistry. Computational study is able to not only provide mechanistic insights but also explain the origin of regioselectivity, enantioselectivity, and stereoselectivity in rhodium-catalyzed C-H functionalization reactions. This Account summarizes our computational work on rhodium-catalyzed C-H functionalization reactions. The mechanistic study under discussion is divided into three main parts: C-H bond cleavage step, transformation of the C-Rh bond, and regeneration of the active catalyst. In the C-H bond cleavage step, computational results of four possible mechanisms, including concerted metalation-deprotonation (CMD), oxidative addition (OA), Friedel-Crafts-type electrophilic aromatic substitution (SAr), and σ-complex assisted metathesis (σ-CAM) are discussed. Subsequent transformation of the C-Rh bond, for example, via insertion of CO, olefin, alkyne, carbene, or nitrene, constructs new C-C or C-heteroatom bonds. For the regeneration of the active catalyst, reductive elimination of a high-valent rhodium complex and protonation of the C-Rh bond are emphasized as potential mechanism candidates. In addition to detailing the reaction pathway, the regioselectivity and diastereoselectivity of rhodium-catalyzed C-H functionalization reactions are also commented upon in this Account. The origin of the selectivity is clarified through theoretical analysis. Furthermore, we summarize and compare the changes in the oxidation state of rhodium along the complete reaction pathway. The work described in this Account demonstrates that rhodium catalysis might proceed via Rh(I)/Rh(III), Rh(II)/Rh(IV), Rh(III)/Rh(V), or non-redox-Rh(III) catalytic cycles.

摘要

过渡金属催化的交叉偶联已成为化学合成的有效策略。在该领域中,直接 C-H 键转化是构建新的 C-C 或 C-杂原子键的最有效和最环保的方法之一。在过去的几十年中,由于铑催化剂在化学中的多功能性和广泛用途,铑催化的 C-H 功能化吸引了相当多的关注。通过铑催化剂可以实现一系列从相应的 C-H 键到 C-X(X = C、N 或 O)键形成反应。已经报道了各种关于铑催化的 C-H 功能化反应的实验研究,同时,机理和计算研究也取得了显著进展。自 2012 年以来,我们小组进行了理论研究,以揭示铑催化的 C-H 功能化反应的机理。我们研究了铑的氧化态变化,并使用密度泛函理论计算比较了 Rh(I)/Rh(III)催化循环和 Rh(III)/Rh(V)催化循环。先进计算方法的发展和计算能力的提高使理论计算成为研究铑化学机理的有力工具。计算研究不仅能够提供机理见解,还能够解释铑催化的 C-H 功能化反应中区域选择性、对映选择性和立体选择性的起源。本报告总结了我们在铑催化的 C-H 功能化反应方面的计算工作。讨论的机理研究分为三个主要部分:C-H 键断裂步骤、C-Rh 键的转化和活性催化剂的再生。在 C-H 键断裂步骤中,讨论了包括协同金属化-去质子化(CMD)、氧化加成(OA)、Friedel-Crafts 型亲电芳香取代(SAr)和σ-配合物辅助复分解(σ-CAM)在内的四种可能机制的计算结果。随后,C-Rh 键的转化,例如通过插入 CO、烯烃、炔烃、卡宾或氮烯,构建新的 C-C 或 C-杂原子键。对于活性催化剂的再生,强调了高价铑配合物的还原消除和 C-Rh 键的质子化作为潜在的机理候选物。除了详细描述反应途径外,本报告还评论了铑催化的 C-H 功能化反应的区域选择性和非对映选择性。通过理论分析阐明了选择性的起源。此外,我们总结并比较了沿完整反应途径铑氧化态的变化。本报告中描述的工作表明,铑催化可能通过 Rh(I)/Rh(III)、Rh(II)/Rh(IV)、Rh(III)/Rh(V)或非氧化还原-Rh(III)催化循环进行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验