Suppr超能文献

理想与实际的自动双柱循环色谱过程。

Ideal versus real automated twin column recycling chromatography process.

作者信息

Gritti Fabrice, Leal Mike, McDonald Thomas, Gilar Martin

机构信息

Waters Corporation, 34 Mapple Street, Milford, MA 01757, USA.

Waters Corporation, 34 Mapple Street, Milford, MA 01757, USA.

出版信息

J Chromatogr A. 2017 Jul 28;1508:81-94. doi: 10.1016/j.chroma.2017.06.009. Epub 2017 Jun 10.

Abstract

The full baseline separation of two compounds (selectivity factors α<1.03) is either impractical (too long analysis times) or even impossible when using a single column of any length given the pressure limitations of current LC instruments. The maximum efficiency is that of an infinitely long column operated at infinitely small flow rates. It is determined by the maximum allowable system pressure, the column permeability (particle size), the viscosity of the eluent, and the intensity of the effective diffusivity of the analytes along the column. Alternatively, the twin-column recycling separation process (TCRSP) can overcome the efficiency limit of the single-column approach. In the TCRSP, the sample mixture may be transferred from one to a second (twin) column until its band has spread over one column length. Basic theory of chromatography is used to confirm that the speed-resolution performance of the TCRSP is intrinsically superior to that of the single-column process. This advantage is illustrated in this work by developing an automated TCRSP for the challenging separation of two polycyclic aromatic hydrocarbon (PAH) isomers (benzo[a]anthracene and chrysene) in the reversed-phase retention mode at pressure smaller than 5000psi. The columns used are the 3.0mm×150mm column packed with 3.5μm XBridge BEH-C material (α=1.010) and the 3.0mm or 4.6mm×150mm columns packed with the same 3.5μm XSelect HSST material (α=1.025). The isocratic mobile phase is an acetonitrile-water mixture (80/20, v/v). Remarkably, significant differences are observed between the predicted retention times and efficiencies of the ideal TCRSP (given by the number of cycles multiplied by the retention time and efficiency of one column) and those of the real TCRSP. The fundamental explanation lies in the pressure-dependent retention of these PAHs or in the change of their partial molar volume as they are transferred from the mobile to the stationary phase. A revisited retention and efficiency model is then built to predict the actual performance of real TCRSPs. The experimental and calculated resolution data are found in very good agreement for a change, Δv=-10cm/mol, of the partial molar volume of the two PAH isomers upon transfer from the acetonitrile-water eluent mixture to the silica-C stationary phase.

摘要

对于两种化合物的完全基线分离(选择性因子α<1.03),在使用任何长度的单根色谱柱时,鉴于当前液相色谱仪器的压力限制,要么不切实际(分析时间过长),甚至是不可能的。最大柱效是在无限小流速下操作的无限长色谱柱的柱效。它由系统最大允许压力、色谱柱渗透率(粒径)、洗脱液粘度以及分析物沿色谱柱的有效扩散系数强度决定。另外,双塔循环分离过程(TCRSP)可以克服单柱方法的柱效限制。在TCRSP中,样品混合物可以从一根色谱柱转移到第二根(双塔)色谱柱,直到其谱带扩展到一根色谱柱的长度。利用色谱基本理论证实,TCRSP的速度-分离性能本质上优于单柱过程。在这项工作中,通过开发一种自动化的TCRSP来体现这一优势,该TCRSP用于在小于5000psi的压力下以反相保留模式挑战性地分离两种多环芳烃(PAH)异构体(苯并[a]蒽和 Chrysene)。使用的色谱柱是填充3.5μm XBridge BEH-C材料的3.0mm×150mm色谱柱(α=1.010)以及填充相同3.5μm XSelect HSST材料的3.0mm或4.6mm×150mm色谱柱(α=1.025)。等度流动相是乙腈-水混合物(80/20,v/v)。值得注意的是,理想TCRSP(由循环次数乘以一根色谱柱的保留时间和柱效给出)与实际TCRSP的预测保留时间和柱效之间存在显著差异。根本原因在于这些PAH的压力依赖性保留,或者在于它们从流动相转移到固定相时其偏摩尔体积的变化。然后建立了一个重新审视的保留和柱效模型来预测实际TCRSP的实际性能。当两种PAH异构体从乙腈-水洗脱液混合物转移到硅胶-C固定相时,偏摩尔体积变化Δv = -10cm/mol,实验和计算得到的分离度数据吻合得非常好。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验