Narayanan Vignesh, Jagannathan Sarangapani
IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):2846-2856. doi: 10.1109/TNNLS.2017.2693205. Epub 2017 Jun 8.
This paper presents an approximate optimal distributed control scheme for a known interconnected system composed of input affine nonlinear subsystems using event-triggered state and output feedback via a novel hybrid learning scheme. First, the cost function for the overall system is redefined as the sum of cost functions of individual subsystems. A distributed optimal control policy for the interconnected system is developed using the optimal value function of each subsystem. To generate the optimal control policy, forward-in-time, neural networks are employed to reconstruct the unknown optimal value function at each subsystem online. In order to retain the advantages of event-triggered feedback for an adaptive optimal controller, a novel hybrid learning scheme is proposed to reduce the convergence time for the learning algorithm. The development is based on the observation that, in the event-triggered feedback, the sampling instants are dynamic and results in variable interevent time. To relax the requirement of entire state measurements, an extended nonlinear observer is designed at each subsystem to recover the system internal states from the measurable feedback. Using a Lyapunov-based analysis, it is demonstrated that the system states and the observer errors remain locally uniformly ultimately bounded and the control policy converges to a neighborhood of the optimal policy. Simulation results are presented to demonstrate the performance of the developed controller.
本文提出了一种针对由输入仿射非线性子系统组成的已知互联系统的近似最优分布式控制方案,该方案通过一种新颖的混合学习方案采用事件触发状态反馈和输出反馈。首先,将整个系统的成本函数重新定义为各个子系统成本函数之和。利用每个子系统的最优值函数,为互联系统开发了一种分布式最优控制策略。为了生成最优控制策略,采用神经网络在每个子系统上在线重构未知的最优值函数。为了保留事件触发反馈在自适应最优控制器中的优势,提出了一种新颖的混合学习方案来减少学习算法的收敛时间。该方案基于这样的观察结果:在事件触发反馈中,采样时刻是动态的,会导致事件间时间间隔可变。为了放宽对全状态测量的要求,在每个子系统上设计了一个扩展非线性观测器,以便从可测反馈中恢复系统内部状态。基于李雅普诺夫分析表明,系统状态和观测器误差保持局部一致最终有界,并且控制策略收敛到最优策略的一个邻域。给出了仿真结果以证明所开发控制器的性能。