Center for Molecular Electrocatalysis, Pacific Northwest National Laboratory , P.O. Box 999, Richland, Washington 99352, United States.
Environmental Molecular Sciences Laboratory , Richland, Washington 99352, United States.
J Am Chem Soc. 2017 Jul 12;139(27):9291-9301. doi: 10.1021/jacs.7b04552. Epub 2017 Jul 3.
The geometric constraints imposed by a tetradentate PN ligand play an essential role in stabilizing square planar Fe complexes with changes in metal oxidation state. The square pyramidal Fe(N)(PN) complex catalyzes the conversion of N to N(SiR) (R = Me, Et) at room temperature, representing the highest turnover number of any Fe-based N silylation catalyst to date (up to 65 equiv N(SiMe) per Fe center). Elevated N pressures (>1 atm) have a dramatic effect on catalysis, increasing N solubility and the thermodynamic N binding affinity at Fe(N)(PN). A combination of high-pressure electrochemistry and variable-temperature UV-vis spectroscopy were used to obtain thermodynamic measurements of N binding. In addition, X-ray crystallography, Fe Mössbauer spectroscopy, and EPR spectroscopy were used to fully characterize these new compounds. Analysis of Fe, Fe, and Fe complexes reveals that the free energy of N binding across three oxidation states spans more than 37 kcal mol.
四齿 PN 配体施加的几何约束在稳定金属氧化态变化的平面四方 Fe 配合物中起着至关重要的作用。平面四方 Fe(N)(PN)配合物在室温下催化 N 到 N(SiR)(R = Me,Et)的转化,这是迄今为止报道的最高转换数的任何基于 Fe 的 N 硅烷化催化剂(高达每 Fe 中心 65 当量的 N(SiMe))。升高的 N 压力(>1 大气压)对催化有显著影响,增加了 N 在 Fe(N)(PN)中的溶解度和热力学 N 结合亲和力。高压电化学和变温紫外可见光谱的组合用于获得 N 结合的热力学测量。此外,还使用 X 射线晶体学、Fe Mössbauer 光谱和 EPR 光谱对这些新化合物进行了全面表征。对 Fe、Fe 和 Fe 配合物的分析表明,跨越三个氧化态的 N 结合自由能跨越超过 37 kcal mol。