Suppr超能文献

一种用于椭圆问题间断伽辽金离散化的大规模并行非重叠加法施瓦茨方法。

A massively parallel nonoverlapping additive Schwarz method for discontinuous Galerkin discretization of elliptic problems.

作者信息

Dryja Maksymilian, Krzyżanowski Piotr

机构信息

University of Warsaw, Warsaw, Poland.

出版信息

Numer Math (Heidelb). 2016;132(2):347-367. doi: 10.1007/s00211-015-0718-5. Epub 2015 Apr 1.

Abstract

A second order elliptic problem with discontinuous coefficient in 2-D or 3-D is considered. The problem is discretized by a symmetric weighted interior penalty discontinuous Galerkin finite element method with nonmatching simplicial elements and piecewise linear functions. The resulting discrete problem is solved by a two-level additive Schwarz method with a relatively coarse grid and with local solves restricted to subdomains which can be as small as single element. In this way the method has a potential for a very high level of fine grained parallelism. Condition number estimate depending on the relative sizes of the underlying grids is provided. The rate of convergence of the method is independent of the jumps of the coefficient if its variation is moderate inside coarse grid substructures or on local solvers' subdomain boundaries. Numerical experiments are reported which confirm theoretical results.

摘要

考虑二维或三维中具有间断系数的二阶椭圆问题。该问题通过具有非匹配单纯形单元和分段线性函数的对称加权内部罚间断伽辽金有限元方法进行离散化。所得离散问题通过具有相对粗网格的两级加法施瓦茨方法求解,且局部求解限制在可小至单个单元的子域上。通过这种方式,该方法具有实现非常高水平细粒度并行性的潜力。给出了依赖于基础网格相对大小的条件数估计。如果系数在粗网格子结构内部或局部求解器的子域边界上的变化适度,则该方法的收敛速率与系数的跳跃无关。报告了证实理论结果的数值实验。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cac/5445549/c452c0eadf69/211_2015_718_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验