Pavlova Alexandra, Beheregaray Luciano B, Coleman Rhys, Gilligan Dean, Harrisson Katherine A, Ingram Brett A, Kearns Joanne, Lamb Annika M, Lintermans Mark, Lyon Jarod, Nguyen Thuy T T, Sasaki Minami, Tonkin Zeb, Yen Jian D L, Sunnucks Paul
School of Biological Sciences Clayton Campus, Monash University Clayton VIC Australia.
School of Biological Sciences Flinders University Adelaide SA Australia.
Evol Appl. 2017 May 11;10(6):531-550. doi: 10.1111/eva.12484. eCollection 2017 Jul.
Genetic diversity underpins the ability of populations to persist and adapt to environmental changes. Substantial empirical data show that genetic diversity rapidly deteriorates in small and isolated populations due to genetic drift, leading to reduction in adaptive potential and fitness and increase in inbreeding. Assisted gene flow (e.g. via translocations) can reverse these trends, but lack of data on fitness loss and fear of impairing population "uniqueness" often prevents managers from acting. Here, we use population genetic and riverscape genetic analyses and simulations to explore the consequences of extensive habitat loss and fragmentation on population genetic diversity and future population trajectories of an endangered Australian freshwater fish, Macquarie perch . Using guidelines to assess the risk of outbreeding depression under admixture, we develop recommendations for population management, identify populations requiring genetic rescue and/or genetic restoration and potential donor sources. We found that most remaining populations of Macquarie perch have low genetic diversity, and effective population sizes below the threshold required to retain adaptive potential. Our simulations showed that under management inaction, smaller populations of Macquarie perch will face inbreeding depression within a few decades, but regular small-scale translocations will rapidly rescue populations from inbreeding depression and increase adaptive potential through genetic restoration. Despite the lack of data on fitness loss, based on our genetic data for Macquarie perch populations, simulations and empirical results from other systems, we recommend regular and frequent translocations among remnant populations within catchments. These translocations will emulate the effect of historical gene flow and improve population persistence through decrease in demographic and genetic stochasticity. Increasing population genetic connectivity within each catchment will help to maintain large effective population sizes and maximize species adaptive potential. The approach proposed here could be readily applicable to genetic management of other threatened species to improve their adaptive potential.
遗传多样性是种群得以存续并适应环境变化的基础。大量实证数据表明,由于遗传漂变,小种群和孤立种群的遗传多样性会迅速恶化,导致适应潜力和适合度降低,近亲繁殖增加。辅助基因流动(例如通过种群迁移)可以扭转这些趋势,但由于缺乏适合度损失的数据以及担心损害种群的“独特性”,管理者往往无法采取行动。在此,我们运用种群遗传学和河流景观遗传学分析及模拟,来探究广泛的栖息地丧失和破碎化对澳大利亚濒危淡水鱼麦夸里鲈种群遗传多样性及未来种群动态的影响。我们依据评估杂交情况下远交衰退风险的指南,制定种群管理建议,确定需要进行遗传拯救和/或遗传恢复的种群以及潜在的供体来源。我们发现,麦夸里鲈现存的大多数种群遗传多样性较低,有效种群大小低于维持适应潜力所需的阈值。我们的模拟表明,在管理不作为的情况下,较小的麦夸里鲈种群将在几十年内面临近亲繁殖衰退,但定期进行小规模种群迁移将迅速使种群摆脱近亲繁殖衰退,并通过遗传恢复增加适应潜力。尽管缺乏适合度损失的数据,但基于我们对麦夸里鲈种群的遗传数据、模拟以及其他系统的实证结果,我们建议在流域内的残余种群之间定期且频繁地进行种群迁移。这些迁移将模拟历史基因流动的效果,并通过减少种群统计学和遗传随机性来提高种群的存续能力。增加每个流域内的种群遗传连通性将有助于维持较大的有效种群大小,并最大限度地提高物种的适应潜力。这里提出的方法可以很容易地应用于其他受威胁物种的遗传管理,以提高它们的适应潜力。