Suppr超能文献

通过景观导向的扩散模拟开发景观遗传学中线性混合建模的方法。

Developing approaches for linear mixed modeling in landscape genetics through landscape-directed dispersal simulations.

作者信息

Row Jeffrey R, Knick Steven T, Oyler-McCance Sara J, Lougheed Stephen C, Fedy Bradley C

机构信息

School of Environment, Resources and Sustainability University of Waterloo Waterloo ON Canada.

Forest and Rangeland Ecosystem Science Center U.S. Geological Survey Boise ID USA.

出版信息

Ecol Evol. 2017 Apr 18;7(11):3751-3761. doi: 10.1002/ece3.2825. eCollection 2017 Jun.

Abstract

Dispersal can impact population dynamics and geographic variation, and thus, genetic approaches that can establish which landscape factors influence population connectivity have ecological and evolutionary importance. Mixed models that account for the error structure of pairwise datasets are increasingly used to compare models relating genetic differentiation to pairwise measures of landscape resistance. A model selection framework based on information criteria metrics or explained variance may help disentangle the ecological and landscape factors influencing genetic structure, yet there are currently no consensus for the best protocols. Here, we develop landscape-directed simulations and test a series of replicates that emulate independent empirical datasets of two species with different life history characteristics (greater sage-grouse; eastern foxsnake). We determined that in our simulated scenarios, AIC and BIC were the best model selection indices and that marginal values were biased toward more complex models. The model coefficients for landscape variables generally reflected the underlying dispersal model with confidence intervals that did not overlap with zero across the entire model set. When we controlled for geographic distance, variables not in the underlying dispersal models (i.e., nontrue) typically overlapped zero. Our study helps establish methods for using linear mixed models to identify the features underlying patterns of dispersal across a variety of landscapes.

摘要

扩散会影响种群动态和地理变异,因此,能够确定哪些景观因素影响种群连通性的遗传学方法具有生态和进化意义。考虑成对数据集误差结构的混合模型越来越多地用于比较将遗传分化与景观抗性成对测量相关联的模型。基于信息标准指标或解释方差的模型选择框架可能有助于厘清影响遗传结构的生态和景观因素,但目前对于最佳方案尚无共识。在此,我们开展了景观导向模拟,并测试了一系列复制品,这些复制品模拟了具有不同生活史特征的两个物种(艾草松鸡;东部狐蛇)的独立实证数据集。我们确定,在我们的模拟场景中,AIC和BIC是最佳的模型选择指标,且边际值偏向于更复杂的模型。景观变量的模型系数通常反映了潜在的扩散模型,其置信区间在整个模型集中不与零重叠。当我们控制地理距离时,潜在扩散模型中不存在的变量(即非真实变量)通常与零重叠。我们的研究有助于建立使用线性混合模型来识别各种景观中扩散模式背后特征的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3904/5468135/1c85ebc4b14b/ECE3-7-3751-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验