Suppr超能文献

采用锂离子束和电子束对 Li-S 电池复合电极的形貌和功能界面进行多模态表征。

Multimodal Characterization of the Morphology and Functional Interfaces in Composite Electrodes for Li-S Batteries by Li Ion and Electron Beams.

机构信息

Material Measurement Laboratory, National Institute of Standards and Technology , Gaithersburg, Maryland 20899, United States.

Maryland NanoCenter, University of Maryland , College Park, Maryland 20742, United States.

出版信息

Langmuir. 2017 Sep 19;33(37):9361-9377. doi: 10.1021/acs.langmuir.7b00978. Epub 2017 Jun 28.

Abstract

We report the characterization of multiscale 3D structural architectures of novel poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymer-based cathodes for high-energy-density Li-S batteries capable of realizing discharge capacities >1000 mAh/g and long cycling lifetimes >500 cycles. Hierarchical morphologies and interfacial structures have been investigated by a combination of focused Li ion beam (LiFIB) and analytical electron microscopy in relation to the electrochemical performance and physicomechanical stability of the cathodes. Charge-free surface topography and composition-sensitive imaging of the electrodes was performed using recently introduced low-energy scanning LiFIB with Li probe sizes of a few tens of nanometers at 5 keV energy and 1 pA probe current. Furthermore, we demonstrate that LiFIB has the ability to inject a certain number of Li cations into the material with nanoscale precision, potentially enabling control of the state of discharge in the selected area. We show that chemical modification of the cathodes by replacing the elemental sulfur with organosulfur copolymers significantly improves its structural integrity and compositional homogeneity down to the sub-5-nm length scale, resulting in the creation of (a) robust functional interfaces and percolated conductive pathways involving graphitic-like outer shells of aggregated nanocarbons and (b) extended micro- and mesoscale porosities required for effective ion transport.

摘要

我们报告了新型聚[硫-随机-(1,3-二异丙烯基苯)]共聚物基阴极的多尺度 3D 结构架构的特性,这种阴极可用于高能量密度 Li-S 电池,能够实现>1000 mAh/g 的放电容量和>500 次循环的长循环寿命。通过聚焦离子束(LiFIB)和分析电子显微镜的组合,研究了分层形态和界面结构与阴极的电化学性能和物理力学稳定性之间的关系。使用最近引入的低能扫描 LiFIB 对电极进行了无电荷表面形貌和对电极组成敏感的成像,该 LiFIB 的 Li 探针尺寸为几十纳米,能量为 5 keV,探针电流为 1 pA。此外,我们证明了 LiFIB 具有以纳米级精度向材料注入一定数量 Li 阳离子的能力,这可能能够控制所选区域的放电状态。我们表明,通过用有机硫共聚物代替元素硫对阴极进行化学修饰,可显著提高其结构完整性和组成均一性,达到亚 5nm 长度尺度,从而形成(a)涉及聚集纳米碳的类石墨外表面的坚固功能界面和连续导电途径,以及(b)扩展的微尺度和介尺度孔隙率,这对于有效离子传输是必需的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验