Suppr超能文献

量化并筛选基于文献发现所产生的知识。

Quantifying and filtering knowledge generated by literature based discovery.

作者信息

Preiss Judita, Stevenson Mark

机构信息

Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello, Sheffield, UK.

出版信息

BMC Bioinformatics. 2017 May 31;18(Suppl 7):249. doi: 10.1186/s12859-017-1641-9.

Abstract

BACKGROUND

Literature based discovery (LBD) automatically infers missed connections between concepts in literature. It is often assumed that LBD generates more information than can be reasonably examined.

METHODS

We present a detailed analysis of the quantity of hidden knowledge produced by an LBD system and the effect of various filtering approaches upon this. The investigation of filtering combined with single or multi-step linking term chains is carried out on all articles in PubMed.

RESULTS

The evaluation is carried out using both replication of existing discoveries, which provides justification for multi-step linking chain knowledge in specific cases, and using timeslicing, which gives a large scale measure of performance.

CONCLUSIONS

While the quantity of hidden knowledge generated by LBD can be vast, we demonstrate that (a) intelligent filtering can greatly reduce the number of hidden knowledge pairs generated, (b) for a specific term, the number of single step connections can be manageable, and

摘要

背景

基于文献的发现(LBD)能自动推断文献中概念之间被遗漏的联系。人们通常认为LBD产生的信息过多,难以进行合理审查。

方法

我们详细分析了一个LBD系统产生的隐藏知识的数量以及各种过滤方法对其的影响。在PubMed中的所有文章上进行了结合单步或多步链接词链的过滤研究。

结果

评估既通过复制现有发现来进行,这为特定情况下的多步链接链知识提供了依据,也通过时间切片来进行,这给出了大规模的性能衡量。

结论

虽然LBD产生的隐藏知识数量可能巨大,但我们证明:(a)智能过滤能大幅减少产生的隐藏知识对的数量;(b)对于特定术语,单步连接的数量是可控的,并且

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3b10/5471938/bf9992477f4f/12859_2017_1641_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验