School of Mechanical and Electrical Engineering, Gui Lin University of Electronic Technology, Gui Lin 541004, China.
School of Mathematics, University of Bristol, Bristol BS8 1TW, United Kingdom.
Phys Rev E. 2017 May;95(5-1):053101. doi: 10.1103/PhysRevE.95.053101. Epub 2017 May 1.
The stability of the gravity-driven flow of a viscous film coating the inside of a tube with a porous wall is studied theoretically. We used Darcy's law to describe the motion of fluids in a porous medium. The Beaver-Joseph condition is used to describe the discontinuity of velocity at the porous-fluid interface. We derived an evolution equation for the film thickness using a long-wave approximation. The effect of velocity slip at the porous wall is identified by a parameter β. We examine the effect of β on the temporal stability, the absolute-convective instability (AI-CI), and the nonlinear evolution of the interface deformation. The results of the temporal stability reveal that the effect of velocity slip at the porous wall is destabilizing. The parameter β plays an important role in determining the AI-CI behavior and the nonlinear evolution of the interface. The presence of the porous wall promotes the absolute instability and the formation of the plug in the tube.
本文从理论上研究了多孔壁管内粘性膜重力驱动流动的稳定性。我们使用达西定律来描述多孔介质中的流体运动。Beaver-Joseph 条件用于描述多孔-流体界面处速度的不连续性。我们使用长波近似推导出薄膜厚度的演化方程。多孔壁处的速度滑移效应由参数β来识别。我们研究了β对时间稳定性、绝对对流不稳定性(AI-CI)和界面变形的非线性演化的影响。时间稳定性的结果表明,多孔壁处的速度滑移效应具有不稳定性。参数β在确定 AI-CI 行为和界面的非线性演化中起着重要作用。多孔壁的存在促进了管内的绝对不稳定性和塞子的形成。