Suppr超能文献

无规长链对自由旋转硬棒流体相行为的影响。

Role of length polydispersity in the phase behavior of freely rotating hard-rectangle fluids.

机构信息

Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911 Leganés, Madrid, Spain.

出版信息

Phys Rev E. 2017 May;95(5-1):052702. doi: 10.1103/PhysRevE.95.052702. Epub 2017 May 22.

Abstract

We use the density-functional formalism, in particular the scaled-particle theory, applied to a length-polydisperse hard-rectangle fluid to study its phase behavior as a function of the mean particle aspect ratio κ_{0} and polydispersity Δ_{0}. The numerical solutions of the coexistence equations are calculated by transforming the original problem with infinite degrees of freedoms to a finite set of equations for the amplitudes of the Fourier expansion of the moments of the density profiles. We divide the study into two parts. The first one is devoted to the calculation of the phase diagrams in the packing fraction η_{0}-κ_{0} plane for a fixed Δ_{0} and selecting parent distribution functions with exponential (the Schulz distribution) or Gaussian decays. In the second part we study the phase behavior in the η_{0}-Δ_{0} plane for fixed κ_{0} while Δ_{0} is changed. We characterize in detail the orientational ordering of particles and the fractionation of different species between the coexisting phases. Also we study the character (second vs first order) of the isotropic-nematic phase transition as a function of polydispersity. We particularly focus on the stability of the tetratic phase as a function of κ_{0} and Δ_{0}. The isotropic-nematic transition becomes strongly of first order when polydispersity is increased: The coexistence gap widens and the location of the tricritical point moves to higher values of κ_{0} while the tetratic phase is slightly destabilized with respect to the nematic one. The results obtained here can be tested in experiments on shaken monolayers of granular rods.

摘要

我们使用密度泛函理论,特别是标度粒子理论,应用于长度多分散硬矩形流体,研究其作为平均粒子纵横比 κ_{0} 和多分散度 Δ_{0} 的函数的相行为。通过将具有无限自由度的原始问题转换为密度分布矩的傅里叶展开的幅度的有限方程组,计算共存方程的数值解。我们将研究分为两部分。第一部分致力于在固定 Δ_{0} 和选择具有指数( Schulz 分布)或高斯衰减的母体分布函数的情况下,在 packing fraction η_{0}-κ_{0} 平面上计算相图。在第二部分中,我们在固定 κ_{0} 的情况下研究 η_{0}-Δ_{0} 平面中的相行为,同时改变 Δ_{0}。我们详细描述了粒子的取向有序和不同物种在共存相之间的分馏。此外,我们还研究了各向同性-向列相转变的性质(二阶与一阶)作为多分散性的函数。我们特别关注 tetratic 相的稳定性作为 κ_{0} 和 Δ_{0} 的函数。当多分散性增加时,各向同性-向列相转变变得强烈是一阶的:共存间隙变宽,临界点的位置向更高的 κ_{0} 值移动,而 tetratic 相相对于向列相略有失稳。这里得到的结果可以在颗粒棒摇晃单层的实验中进行测试。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验