Suppr超能文献

由于聚集导致四方相稳定性增强。

Enhanced stability of the tetratic phase due to clustering.

作者信息

Martínez-Ratón Yuri, Velasco Enrique

机构信息

Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matemáticas, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Avenida de la Universidad 30, 28911-Leganés, Madrid, Spain.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jan;79(1 Pt 1):011711. doi: 10.1103/PhysRevE.79.011711. Epub 2009 Jan 30.

Abstract

We show that the relative stability of the nematic tetratic phase with respect to the usual uniaxial nematic phase can be greatly enhanced by clustering effects. Two-dimensional rectangles of aspect ratio kappa interacting via hard interactions are considered, and the stability of the two nematic phases (uniaxial and tetratic) is examined using an extended scaled-particle theory applied to a polydispersed fluid mixture of n species. Here the ith species is associated with clusters of i rectangles, with clusters defined as stacks of rectangles containing approximately parallel rectangles, with frozen internal degrees of freedom. The theory assumes an exponential cluster size distribution (an assumption fully supported by Monte Carlo simulations and by a simple chemical-reaction model), with fixed value of the second moment. The corresponding area distribution presents a shoulder, and sometimes even a well-defined peak, at cluster sizes approximately corresponding to square shape (i.e., i approximately kappa), meaning that square clusters have a dominant contribution to the free energy of the hard-rectangle fluid. The theory predicts an enhanced region of stability of the tetratic phase with respect to the standard scaled-particle theory, much closer to simulation and to experimental results, demonstrating the importance of clustering in this fluid.

摘要

我们表明,通过聚集效应,向列四极相相对于通常的单轴向列相的相对稳定性可以大大提高。考虑了通过硬相互作用相互作用的纵横比为κ的二维矩形,并使用应用于n种多分散流体混合物的扩展标度粒子理论研究了两种向列相(单轴和四极)的稳定性。这里第i种物质与i个矩形的簇相关联,簇被定义为包含近似平行矩形且内部自由度冻结的矩形堆叠。该理论假设簇尺寸呈指数分布(这一假设得到蒙特卡罗模拟和一个简单化学反应模型的充分支持),且二阶矩值固定。相应的面积分布在大约对应于方形形状(即i近似于κ)的簇尺寸处呈现一个肩部,有时甚至是一个明确的峰值,这意味着方形簇对硬矩形流体的自由能有主要贡献。该理论预测,相对于标准标度粒子理论,四极相的稳定性增强区域更接近模拟和实验结果,证明了聚集在这种流体中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验