Suppr超能文献

肌球蛋白结合蛋白 talin 杆的机械稳定性控制细胞迁移和基质感应。

Mechanical stability of talin rod controls cell migration and substrate sensing.

机构信息

Faculty of Medicine and Life Sciences and BioMediTech, University of Tampere, Finland and Fimlab Laboratories, Tampere, Finland.

Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Karlsruhe, Germany.

出版信息

Sci Rep. 2017 Jun 15;7(1):3571. doi: 10.1038/s41598-017-03335-2.

Abstract

Cells adhere to the surrounding tissue and probe its mechanical properties by forming cell-matrix adhesions. Talin is a critical adhesion protein and participates in the transmission of mechanical signals between extracellular matrix and cell cytoskeleton. Force induced unfolding of talin rod subdomains has been proposed to act as a cellular mechanosensor, but so far evidence linking their mechanical stability and cellular response has been lacking. Here, by utilizing computationally designed mutations, we demonstrate that stepwise destabilization of the talin rod R3 subdomain decreases cellular traction force generation, which affects talin and vinculin dynamics in cell-matrix adhesions and results in the formation of talin-rich but unstable adhesions. We observed a connection between talin stability and the rate of cell migration and also found that talin destabilization affects the usage of different integrin subtypes and sensing of extracellular matrix proteins. Experiments with truncated forms of talin confirm the mechanosensory role of the talin R3 subdomain and exclude the possibility that the observed effects are caused by the release of talin head-rod autoinhibition. In conclusion, this study provides evidence into how the controlled talin rod domain unfolding acts as a key regulator of adhesion structure and function and consequently controls central cellular processes such as cell migration and substrate sensing.

摘要

细胞通过形成细胞-基质黏附物来黏附在周围组织上,并探测其力学特性。桩蛋白是一种关键的黏附蛋白,参与细胞外基质和细胞骨架之间的力学信号传递。力诱导的桩蛋白棒状结构域的展开被认为是一种细胞机械感受器,但到目前为止,还缺乏将其力学稳定性与细胞反应联系起来的证据。在这里,我们利用计算设计的突变,证明了桩蛋白棒状结构域 R3 亚结构域的逐步去稳定化会降低细胞牵引力的产生,这会影响细胞-基质黏附物中的桩蛋白和纽蛋白的动力学,并导致富含桩蛋白但不稳定的黏附物的形成。我们观察到了桩蛋白稳定性与细胞迁移速度之间的联系,也发现了桩蛋白去稳定化会影响不同整合素亚型的使用以及对细胞外基质蛋白的感知。用截短形式的桩蛋白进行的实验证实了桩蛋白 R3 亚结构域的机械感受器作用,并排除了观察到的效应是由桩蛋白头-杆自动抑制的释放引起的可能性。总之,这项研究提供了证据,证明了受控的桩蛋白棒状结构域展开如何作为黏附结构和功能的关键调节剂,从而控制细胞迁移和基质感知等核心细胞过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d0c/5472591/8d9bb0c355dc/41598_2017_3335_Fig1_HTML.jpg

相似文献

1
Mechanical stability of talin rod controls cell migration and substrate sensing.
Sci Rep. 2017 Jun 15;7(1):3571. doi: 10.1038/s41598-017-03335-2.
3
Force-induced activation of talin and its possible role in focal adhesion mechanotransduction.
J Biomech. 2007;40(9):2096-106. doi: 10.1016/j.jbiomech.2007.04.006.
4
The Architecture of Talin1 Reveals an Autoinhibition Mechanism.
Cell. 2019 Sep 19;179(1):120-131.e13. doi: 10.1016/j.cell.2019.08.034.
5
Talin - the master of integrin adhesions.
J Cell Sci. 2017 Aug 1;130(15):2435-2446. doi: 10.1242/jcs.190991. Epub 2017 Jul 12.
6
The mechanical response of talin.
Nat Commun. 2016 Jul 7;7:11966. doi: 10.1038/ncomms11966.
7
Mechanotransduction in talin through the interaction of the R8 domain with DLC1.
PLoS Biol. 2018 Jul 20;16(7):e2005599. doi: 10.1371/journal.pbio.2005599. eCollection 2018 Jul.
8
All Subdomains of the Talin Rod Are Mechanically Vulnerable and May Contribute To Cellular Mechanosensing.
ACS Nano. 2016 Jul 26;10(7):6648-58. doi: 10.1021/acsnano.6b01658. Epub 2016 Jul 11.
9
Vinculin controls talin engagement with the actomyosin machinery.
Nat Commun. 2015 Dec 4;6:10038. doi: 10.1038/ncomms10038.

引用本文的文献

1
Cellular stiffness sensing through talin 1 in tissue mechanical homeostasis.
Sci Adv. 2024 Aug 23;10(34):eadi6286. doi: 10.1126/sciadv.adi6286. Epub 2024 Aug 21.
2
ConFERMing the role of talin in integrin activation and mechanosignaling.
J Cell Sci. 2023 Apr 15;136(8). doi: 10.1242/jcs.260576. Epub 2023 Apr 20.
3
The mechanical cell - the role of force dependencies in synchronising protein interaction networks.
J Cell Sci. 2022 Nov 15;135(22). doi: 10.1242/jcs.259769. Epub 2022 Nov 18.
4
Generic self-stabilization mechanism for biomolecular adhesions under load.
Nat Commun. 2022 Apr 22;13(1):2197. doi: 10.1038/s41467-022-29823-2.
5
Paxillin: A Hub for Mechano-Transduction from the β3 Integrin-Talin-Kindlin Axis.
Front Cell Dev Biol. 2022 Apr 5;10:852016. doi: 10.3389/fcell.2022.852016. eCollection 2022.
6
Direct observation of chaperone-modulated talin mechanics with single-molecule resolution.
Commun Biol. 2022 Apr 4;5(1):307. doi: 10.1038/s42003-022-03258-3.
7
A primer to traction force microscopy.
J Biol Chem. 2022 May;298(5):101867. doi: 10.1016/j.jbc.2022.101867. Epub 2022 Mar 26.
8
Intrinsic Mechanical Cues and Their Impact on Stem Cells and Embryogenesis.
Front Cell Dev Biol. 2021 Nov 8;9:761871. doi: 10.3389/fcell.2021.761871. eCollection 2021.
9
Talin in mechanotransduction and mechanomemory at a glance.
J Cell Sci. 2021 Oct 15;134(20). doi: 10.1242/jcs.258749. Epub 2021 Oct 28.
10
Protein nanomechanics in biological context.
Biophys Rev. 2021 Aug 7;13(4):435-454. doi: 10.1007/s12551-021-00822-9. eCollection 2021 Aug.

本文引用的文献

1
Talin2-mediated traction force drives matrix degradation and cell invasion.
J Cell Sci. 2016 Oct 1;129(19):3661-3674. doi: 10.1242/jcs.185959.
2
The mechanical response of talin.
Nat Commun. 2016 Jul 7;7:11966. doi: 10.1038/ncomms11966.
3
All Subdomains of the Talin Rod Are Mechanically Vulnerable and May Contribute To Cellular Mechanosensing.
ACS Nano. 2016 Jul 26;10(7):6648-58. doi: 10.1021/acsnano.6b01658. Epub 2016 Jul 11.
7
Vinculin controls talin engagement with the actomyosin machinery.
Nat Commun. 2015 Dec 4;6:10038. doi: 10.1038/ncomms10038.
8
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验