Department of Chemical Engineering, Khalifa University of Science and Technology, Masdar Institute, PO Box: 54224, Abu Dhabi, United Arab Emirates.
Water Res. 2017 Oct 1;122:407-418. doi: 10.1016/j.watres.2017.05.067. Epub 2017 May 31.
In this work, a generalized method for the estimation of biokinetic parameters in anaerobic digestion (AD) models is proposed. The method consists of a correlation-based approach to estimate specific groups of parameters mechanistically, followed by a sensitivity-based hierarchical and sequential single parameter optimisation (SHSSPO) calibration method for the remaining groups of parameters. The method was evaluated to estimate and calibrate the parameter values for sulfate reduction processes when included into the IWA Anaerobic Digestion Model No. 1 (ADM1) and simulations were compared with experimental data from literature. Under the proposed method, a large number of biokinetic parameters, namely biomass yields, maximum specific uptake rates, and half saturation constants, can first be estimated using mechanistic correlations. This achieves a significant reduction in the number of parameters to be fitted to data. For the remaining parameters, a method is proposed based on the overall sensitivity and degree of ubiquity of each parameter to establish a hierarchy in a sequential single parameter optimisation against the experimental data. This approach aims at eliminating the uncertainty on optimality (and therefore parameter identification) associated to multivariable parameter calibration problems. The method was applied to the sulfate reduction related parameters and led to the hydrogen sulfide inhibition parameters as the only ones requiring optimisation against experimental data. Comparison of the proposed SHSSPO performance with that of multi-dimensional parameter optimisation methods shows a superior performance in terms of overall error and computation times. Also, final simulation results led to model predictions of similar, if not better, quality than those achieved by multivariable parameter optimisation methods. The experimental variables optimized for included liquid effluent concentrations of sulfur species and volatile fatty acids as well as effluent methane gas flow. Overall, the proposed parameter estimation and calibration method provides a deterministic step-by-step approach to parameter estimation that decreases identifiability uncertainty at a very low computational effort. The results obtained suggest that the method could be generically applied with similar success to other biokinetic models frequently used in wastewater treatment.
在这项工作中,提出了一种用于估计厌氧消化(AD)模型中生物动力学参数的广义方法。该方法包括一种基于相关性的方法,用于从机制上估计特定的参数组,然后是基于灵敏度的层次和顺序单参数优化(SHSSPO)校准方法,用于其余参数组。该方法用于估计和校准硫酸盐还原过程的参数值,当将其包含在 IWA 厌氧消化模型 1(ADM1)中时,并将模拟结果与文献中的实验数据进行比较。在提出的方法下,可以使用机械相关性首先估计大量的生物动力学参数,即生物量产率、最大比吸收速率和半饱和常数。这实现了需要拟合数据的参数数量的显著减少。对于其余的参数,提出了一种基于每个参数的整体灵敏度和普遍性的方法,在针对实验数据的顺序单参数优化中建立一个层次结构。这种方法旨在消除与多变量参数校准问题相关的最优性(因此参数识别)的不确定性。该方法应用于硫酸盐还原相关参数,导致只有硫化氢抑制参数需要针对实验数据进行优化。与多维参数优化方法的拟议 SHSSPO 性能的比较表明,在总误差和计算时间方面具有更好的性能。此外,最终的模拟结果导致模型预测的质量与多变量参数优化方法相当,如果不是更好的话。优化的实验变量包括硫物种和挥发性脂肪酸的液体流出物浓度以及流出甲烷气流。总体而言,拟议的参数估计和校准方法提供了一种确定性的逐步参数估计方法,在非常低的计算工作量下降低了可识别性的不确定性。结果表明,该方法可以在其他废水处理中常用的类似生物动力学模型中以类似的成功应用。