Suppr超能文献

就神经精神安全性而言,戒烟药物之间如何比较?一项系统评价、网状Meta分析和成本效益分析的方案。

How do smoking cessation medicines compare with respect to their neuropsychiatric safety? A protocol for a systematic review, network meta-analysis and cost-effectiveness analysis.

作者信息

Thomas Kyla H, Caldwell Deborah, Dalili Michael N, Gunnell David, Munafò Marcus R, Stevenson Matt, Welton Nicky J

机构信息

School of Social and Community Medicine, University of Bristol, Bristol, UK.

MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK.

出版信息

BMJ Open. 2017 Jun 17;7(6):e015414. doi: 10.1136/bmjopen-2016-015414.

Abstract

INTRODUCTION

Cigarette smoking is one of the leading causes of early death in the UK and worldwide. Public health guidance recommends the use of varenicline, bupropion and nicotine replacement therapy (NRT) as smoking cessation aids in the UK. Additionally, the first electronic cigarette has been licensed for use as a smoking cessation medicine. However, there are ongoing concerns about the safety of these medicines. We present a protocol for a systematic review and network meta-analysis (NMA) to determine how these smoking cessation medicines compare to each other with respect to their neuropsychiatric safety in adult smokers. Secondary aims include updating the evidence regarding the effectiveness and cardiovascular safety of these medicines for use in a cost-effectiveness analysis.

METHODS AND ANALYSIS

We will include randomised controlled trials and observational studies with control groups comparing monotherapy with varenicline, bupropion, NRT or electronic cigarette and combination therapies to each other, placebo or usual care. The primary composite safety outcome will be serious adverse events, defined as events that resulted in death, were life threatening, required hospitalisation or resulted in significant disability or congenital/birth defect. The preferred effectiveness outcome will be sustained smoking cessation defined as abstinence for a minimum of 6 months as determined by biochemical validation. We will include trials identified by previous reviews and search relevant databases for newly published trials as well as contacting study authors to identify unpublished information. We will conduct fixed-effect and random-effect meta-analyses for each pairwise comparison of treatments and outcome; where these estimates differ, we will consider reasons for heterogeneity, quantified using the between-study variance (τ). For each outcome, we will construct a NMA in a Bayesian framework which will be compared with the pair-wise results, allowing us to rank treatments. The effectiveness estimates from the NMA will be entered into a probabilistic economic model.

ETHICS AND DISSEMINATION

Ethics approval is not required for this evidence synthesis study as it involves analysis of secondary data from randomised controlled trials and observational studies. The review will make an important contribution to the knowledge base around the effectiveness, safety and cost-effectiveness of smoking cessation medicines. Results will be disseminated to the general public, healthcare practitioners and clinicians, academics, industry and policy makers.

PROSPERO REGISTRATION NUMBER

CRD42016041302.

摘要

引言

在英国及全球范围内,吸烟是导致过早死亡的主要原因之一。英国的公共卫生指南推荐使用伐尼克兰、安非他酮和尼古丁替代疗法(NRT)作为戒烟辅助手段。此外,首款电子烟已获批用作戒烟药物。然而,人们对这些药物的安全性仍存在持续担忧。我们提出一项系统评价和网状Meta分析(NMA)方案,以确定这些戒烟药物在成年吸烟者的神经精神安全性方面如何相互比较。次要目标包括更新这些药物用于成本效益分析时的有效性和心血管安全性证据。

方法与分析

我们将纳入随机对照试验和有对照组的观察性研究,这些研究比较伐尼克兰、安非他酮、NRT或电子烟单药治疗以及联合治疗之间、与安慰剂或常规护理之间的差异。主要综合安全结局将是严重不良事件,定义为导致死亡、危及生命、需要住院治疗或导致严重残疾或先天性/出生缺陷的事件。首选的有效性结局将是持续戒烟,定义为经生化验证确定至少6个月的戒烟。我们将纳入先前综述中确定的试验,并检索相关数据库以查找新发表的试验,同时联系研究作者以获取未发表的信息。我们将对每种治疗与结局的两两比较进行固定效应和随机效应Meta分析;如果这些估计值不同,我们将考虑异质性的原因,使用研究间方差(τ)进行量化。对于每个结局,我们将在贝叶斯框架下构建NMA,并将其与两两比较结果进行比较,从而使我们能够对治疗进行排序。NMA的有效性估计值将输入概率经济模型。

伦理与传播

由于本证据综合研究涉及对随机对照试验和观察性研究的二次数据分析,因此无需伦理批准。该综述将对围绕戒烟药物的有效性、安全性和成本效益的知识库做出重要贡献。结果将传播给公众、医疗保健从业者和临床医生、学者、行业和政策制定者。

PROSPERO注册号:CRD42016041302。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/343c/5734370/69c168e6bc6f/bmjopen-2016-015414f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验