Suppr超能文献

基于L1L2,1-整合惩罚矩阵分解识别药物-通路关联对。

Identifying drug-pathway association pairs based on L1L2,1-integrative penalized matrix decomposition.

作者信息

Wang Dong-Qin, Gao Ying-Lian, Liu Jin-Xing, Zheng Chun-Hou, Kong Xiang-Zhen

机构信息

School of Information Science and Engineering, Qufu Normal University, Rizhao, China.

Library of Qufu Normal University, Qufu Normal University, Rizhao, China.

出版信息

Oncotarget. 2017 Jul 18;8(29):48075-48085. doi: 10.18632/oncotarget.18254.

Abstract

The traditional methods of drug discovery follow the "one drug-one target" approach, which ignores the cellular and physiological environment of the action mechanism of drugs. However, pathway-based drug discovery methods can overcome this limitation. This kind of method, such as the Integrative Penalized Matrix Decomposition (iPaD) method, identifies the drug-pathway associations by taking the lasso-type penalty on the regularization term. Moreover, instead of imposing the L1-norm regularization, the L2,1-Integrative Penalized Matrix Decomposition (L2,1-iPaD) method imposes the L2,1-norm penalty on the regularization term. In this paper, based on the iPaD and L2,1-iPaD methods, we propose a novel method named L1L2,1-iPaD (L1L2,1-Integrative Penalized Matrix Decomposition), which takes the sum of the L1-norm and L2,1-norm penalties on the regularization term. Besides, we perform permutation test to assess the significance of the identified drug-pathway association pairs and compute the P-values. Compared with the existing methods, our method can identify more drug-pathway association pairs which have been validated in the CancerResource database. In order to identify drug-pathway associations which are not validated in the CancerResource database, we retrieve published papers to prove these associations. The results on two real datasets prove that our method can achieve better enrichment for identified association pairs than the iPaD and L2,1-iPaD methods.

摘要

传统的药物发现方法遵循“一药一靶”的方法,这种方法忽略了药物作用机制的细胞和生理环境。然而,基于通路的药物发现方法可以克服这一局限性。这种方法,如整合惩罚矩阵分解(iPaD)方法,通过对正则化项采用套索型惩罚来识别药物-通路关联。此外,与施加L1范数正则化不同,L2,1-整合惩罚矩阵分解(L2,1-iPaD)方法对正则化项施加L2,1范数惩罚。在本文中,基于iPaD和L2,1-iPaD方法,我们提出了一种名为L1L2,1-iPaD(L1L2,1-整合惩罚矩阵分解)的新方法,该方法对正则化项采用L1范数和L2,1范数惩罚之和。此外,我们进行排列检验以评估所识别的药物-通路关联对的显著性并计算P值。与现有方法相比,我们的方法可以识别出更多在癌症资源数据库中已得到验证的药物-通路关联对。为了识别在癌症资源数据库中未得到验证的药物-通路关联,我们检索已发表的论文来证明这些关联。在两个真实数据集上的结果证明,我们的方法比iPaD和L2,1-iPaD方法在识别的关联对上能够实现更好的富集。

相似文献

4
IPAD: the Integrated Pathway Analysis Database for Systematic Enrichment Analysis.IPAD:系统富集分析的综合途径分析数据库。
BMC Bioinformatics. 2012;13 Suppl 15(Suppl 15):S7. doi: 10.1186/1471-2105-13-S15-S7. Epub 2012 Sep 11.
10
Predicting drug-induced QT prolongation effects using multi-view learning.利用多视图学习预测药物引起的 QT 间期延长效应。
IEEE Trans Nanobioscience. 2013 Sep;12(3):206-13. doi: 10.1109/TNB.2013.2263511. Epub 2013 May 16.

本文引用的文献

3
The Pathway Analysis of Micrornas Regulated Drug-Resistant Responses in HeLa Cells.微小RNA调控HeLa细胞耐药反应的信号通路分析
IEEE Trans Nanobioscience. 2016 Mar;15(2):113-8. doi: 10.1109/TNB.2016.2539365. Epub 2016 Mar 23.
9
Drug target inference through pathway analysis of genomics data.通过基因组学数据的通路分析进行药物靶点推断。
Adv Drug Deliv Rev. 2013 Jun 30;65(7):966-72. doi: 10.1016/j.addr.2012.12.004. Epub 2013 Jan 28.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验