Wang Dong-Qin, Gao Ying-Lian, Liu Jin-Xing, Zheng Chun-Hou, Kong Xiang-Zhen
School of Information Science and Engineering, Qufu Normal University, Rizhao, China.
Library of Qufu Normal University, Qufu Normal University, Rizhao, China.
Oncotarget. 2017 Jul 18;8(29):48075-48085. doi: 10.18632/oncotarget.18254.
The traditional methods of drug discovery follow the "one drug-one target" approach, which ignores the cellular and physiological environment of the action mechanism of drugs. However, pathway-based drug discovery methods can overcome this limitation. This kind of method, such as the Integrative Penalized Matrix Decomposition (iPaD) method, identifies the drug-pathway associations by taking the lasso-type penalty on the regularization term. Moreover, instead of imposing the L1-norm regularization, the L2,1-Integrative Penalized Matrix Decomposition (L2,1-iPaD) method imposes the L2,1-norm penalty on the regularization term. In this paper, based on the iPaD and L2,1-iPaD methods, we propose a novel method named L1L2,1-iPaD (L1L2,1-Integrative Penalized Matrix Decomposition), which takes the sum of the L1-norm and L2,1-norm penalties on the regularization term. Besides, we perform permutation test to assess the significance of the identified drug-pathway association pairs and compute the P-values. Compared with the existing methods, our method can identify more drug-pathway association pairs which have been validated in the CancerResource database. In order to identify drug-pathway associations which are not validated in the CancerResource database, we retrieve published papers to prove these associations. The results on two real datasets prove that our method can achieve better enrichment for identified association pairs than the iPaD and L2,1-iPaD methods.
传统的药物发现方法遵循“一药一靶”的方法,这种方法忽略了药物作用机制的细胞和生理环境。然而,基于通路的药物发现方法可以克服这一局限性。这种方法,如整合惩罚矩阵分解(iPaD)方法,通过对正则化项采用套索型惩罚来识别药物-通路关联。此外,与施加L1范数正则化不同,L2,1-整合惩罚矩阵分解(L2,1-iPaD)方法对正则化项施加L2,1范数惩罚。在本文中,基于iPaD和L2,1-iPaD方法,我们提出了一种名为L1L2,1-iPaD(L1L2,1-整合惩罚矩阵分解)的新方法,该方法对正则化项采用L1范数和L2,1范数惩罚之和。此外,我们进行排列检验以评估所识别的药物-通路关联对的显著性并计算P值。与现有方法相比,我们的方法可以识别出更多在癌症资源数据库中已得到验证的药物-通路关联对。为了识别在癌症资源数据库中未得到验证的药物-通路关联,我们检索已发表的论文来证明这些关联。在两个真实数据集上的结果证明,我们的方法比iPaD和L2,1-iPaD方法在识别的关联对上能够实现更好的富集。