文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

磁铁矿葡聚糖-精胺纳米颗粒在乳腺癌热疗中的合成与应用

Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia.

作者信息

Avazzadeh Reza, Vasheghani-Farahani Ebrahim, Soleimani Masoud, Amanpour Saeid, Sadeghi Mohsen

机构信息

Biomedical Engineering Group, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.

Hematology Group, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

出版信息

Prog Biomater. 2017 Sep;6(3):75-84. doi: 10.1007/s40204-017-0068-8. Epub 2017 Jun 17.


DOI:10.1007/s40204-017-0068-8
PMID:28624871
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5597569/
Abstract

Cancer treatment has been very challenging in recent decades. One of the most promising cancer treatment methods is hyperthermia, which increases the tumor temperature (41-45 °C). Magnetic nanoparticles have been widely used for selective targeting of cancer cells. In the present study, magnetic dextran-spermine nanoparticles, conjugated with Anti-HER2 antibody to target breast cancer cells were developed. The magnetic dextran-spermine nanoparticles (DMNPs) were prepared by ionic gelation, followed by conjugation of antibody to them using EDC-NHS method. Then the Prussian blue method was used to estimate the targeting ability and cellular uptake. Cytotoxicity assay by MTT showed that antibody-conjugated MNPs (ADMNPs) have no toxic effect on SKBR3 and human fibroblast cells. Finally, the hyperthermia was applied to show that synthesized ADMNPs, could increase the cancer cells temperature up to 45 °C and kill most of them without affecting normal cells. These observations proved that Anti-HER2 conjugated magnetic dextran-spermine nanoparticles can target and destroy cancer cells and are potentially suitable for cancer treatment.

摘要

近几十年来,癌症治疗一直极具挑战性。最有前景的癌症治疗方法之一是热疗,即提高肿瘤温度(41-45°C)。磁性纳米颗粒已被广泛用于癌细胞的选择性靶向。在本研究中,开发了与抗HER2抗体偶联以靶向乳腺癌细胞的磁性葡聚糖-精胺纳米颗粒。磁性葡聚糖-精胺纳米颗粒(DMNPs)通过离子凝胶法制备,然后使用EDC-NHS方法将抗体偶联到其上。然后使用普鲁士蓝法评估靶向能力和细胞摄取。MTT细胞毒性试验表明,抗体偶联的磁性纳米颗粒(ADMNPs)对SKBR3和人成纤维细胞没有毒性作用。最后,应用热疗表明合成的ADMNPs可以将癌细胞温度提高到45°C并杀死大多数癌细胞,而不影响正常细胞。这些观察结果证明,抗HER2偶联的磁性葡聚糖-精胺纳米颗粒可以靶向并破坏癌细胞,并且可能适用于癌症治疗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/844c801bf454/40204_2017_68_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/cf32504c5272/40204_2017_68_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/bfdc953b07bd/40204_2017_68_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/d772da7f095b/40204_2017_68_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/43c9f095049a/40204_2017_68_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/b28b014cad4c/40204_2017_68_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/9680e0047530/40204_2017_68_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/844c801bf454/40204_2017_68_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/cf32504c5272/40204_2017_68_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/bfdc953b07bd/40204_2017_68_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/d772da7f095b/40204_2017_68_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/43c9f095049a/40204_2017_68_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/b28b014cad4c/40204_2017_68_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/9680e0047530/40204_2017_68_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d411/5597569/844c801bf454/40204_2017_68_Fig7_HTML.jpg

相似文献

[1]
Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia.

Prog Biomater. 2017-9

[2]
Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells.

Int J Pharm. 2016-3-30

[3]
Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier.

J Biomed Mater Res A. 2017-7-14

[4]
Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia.

Cancer Lett. 2004-8-30

[5]
Assessment of Magnetic Dextran-Spermine Nanoparticles for Capecitabine Delivery to Cancerous Cells.

Iran J Pharm Res. 2017

[6]
In vitro anti-cancer efficacy of multi-functionalized magnetite nanoparticles combining alternating magnetic hyperthermia in glioblastoma cancer cells.

Mater Sci Eng C Mater Biol Appl. 2019-4-6

[7]
Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with Ac as a Perspective Tool for Combined α-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer.

Molecules. 2020-2-25

[8]
Triple Therapy of HER2 Cancer Using Radiolabeled Multifunctional Iron Oxide Nanoparticles and Alternating Magnetic Field.

Cancer Biother Radiopharm. 2016-11

[9]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[10]
One-pot preparation of hyaluronic acid-coated iron oxide nanoparticles for magnetic hyperthermia therapy and targeting CD44-overexpressing cancer cells.

Carbohydr Polym. 2020-3-6

引用本文的文献

[1]
How Do Cyclodextrins and Dextrans Affect the Gut Microbiome? Review of Prebiotic Activity.

Molecules. 2024-11-11

[2]
Preparation and evaluation of the PD0721‑DOX antibody‑drug conjugate targeting EGFRvIII to inhibit glioblastoma.

Exp Ther Med. 2024-4-17

[3]
Nanocarriers for anticancer drugs: Challenges and perspectives.

Saudi J Biol Sci. 2022-6

[4]
TPGS2000-DOX Prodrug Micelles for Improving Breast Cancer Therapy.

Int J Nanomedicine. 2021

本文引用的文献

[1]
Toxicity evaluation of magnetic hyperthermia induced by remote actuation of magnetic nanoparticles in 3D micrometastasic tumor tissue analogs for triple negative breast cancer.

Biomaterials. 2017-3

[2]
Thermal analysis of magnetic nanoparticle in alternating magnetic field on human HCT-116 colon cancer cell line.

Int J Hyperthermia. 2016-12

[3]
Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells.

Int J Pharm. 2016-3-30

[4]
Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.

Breast Cancer Res. 2015-5-13

[5]
Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells.

Int J Pharm. 2015-1-16

[6]
Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia.

Int J Hyperthermia. 2015-2

[7]
PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy.

Biomaterials. 2014-9-16

[8]
Perspectives of breast cancer thermotherapies.

J Cancer. 2014-5-29

[9]
Thermally responsive nanoparticle-encapsulated curcumin and its combination with mild hyperthermia for enhanced cancer cell destruction.

Acta Biomater. 2014-2

[10]
Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications.

Acta Biomater. 2014-1-31

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索