Suppr超能文献

利用从异质网络中获取的蛋白质进化和化学信息,通过标签传播预测蛋白质-蛋白质相互作用。

Prediction of protein-protein interactions by label propagation with protein evolutionary and chemical information derived from heterogeneous network.

作者信息

Wen Yu-Ting, Lei Hai-Jun, You Zhu-Hong, Lei Bai-Ying, Chen Xing, Li Li-Ping

机构信息

College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.

Xinjiang Technical Institutes of Physics and Chemistry, Chinese Academy of Science, Urumqi 830011, China.

出版信息

J Theor Biol. 2017 Oct 7;430:9-20. doi: 10.1016/j.jtbi.2017.06.003. Epub 2017 Jun 16.

Abstract

Prediction of protein-protein interactions (PPIs) is of great significance. To achieve this, we propose a novel computational method for PPIs prediction based on a similarity network fusion (SNF) model for integrating the physical and chemical properties of proteins. Specifically, the physical and chemical properties of protein are the protein amino acid mutation rate and its hydrophobicity, respectively. The amino acid mutation rate is extracted using a BLOSUM62 matrix, which puts the protein sequence into block substitution matrix. The SNF model is exploited to fuse protein physical and chemical features of multiple data by iteratively updating each original network. Finally, the complementary features from the fused network are fed into a label propagation algorithm (LPA) for PPIs prediction. The experimental results show that the proposed method achieves promising performance and outperforms the traditional methods for the public dataset of H. pylori, Human, and Yeast. In addition, our proposed method achieves average accuracy of 76.65%, 81.98%, 84.56%, 84.01% and 84.38% on E. coli, C. elegans, H. sapien, H. pylori and M. musculus datasets, respectively. Comparison results demonstrate that the proposed method is very promising and provides a cost-effective alternative for predicting PPIs. The source code and all datasets are available at http://pan.baidu.com/s/1dF7rp7N.

摘要

蛋白质-蛋白质相互作用(PPI)的预测具有重要意义。为实现这一目标,我们基于相似性网络融合(SNF)模型提出了一种用于PPI预测的新型计算方法,该模型用于整合蛋白质的物理和化学性质。具体而言,蛋白质的物理和化学性质分别是蛋白质氨基酸突变率及其疏水性。氨基酸突变率使用BLOSUM62矩阵提取,该矩阵将蛋白质序列放入块替换矩阵中。利用SNF模型通过迭代更新每个原始网络来融合多个数据的蛋白质物理和化学特征。最后,将融合网络中的互补特征输入到标签传播算法(LPA)中进行PPI预测。实验结果表明,所提出的方法取得了良好的性能,并且在幽门螺杆菌、人类和酵母的公共数据集上优于传统方法。此外,我们提出的方法在大肠杆菌、秀丽隐杆线虫、智人、幽门螺杆菌和小家鼠数据集上分别达到了76.65%、81.98%、84.56%、84.01%和84.38%的平均准确率。比较结果表明,所提出的方法非常有前景,为预测PPI提供了一种经济高效的替代方案。源代码和所有数据集可在http://pan.baidu.com/s/1dF7rp7N获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验