Gard Chris, Gonzalez Curto Gloria, Frarma Youcef El-Mokhtar, Chollet Elodie, Duval Nathalie, Auzié Valentine, Auradé Frédéric, Vigier Lisa, Relaix Frédéric, Pierani Alessandra, Causeret Frédéric, Ribes Vanessa
Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France.
Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex, France; Institut Pasteur, Department of Developmental and Stem Cell Biology, CNRS URA 2578, 75015 Paris, France.
Dev Biol. 2017 Dec 1;432(1):24-33. doi: 10.1016/j.ydbio.2017.06.014. Epub 2017 Jun 16.
Transcription factors are key orchestrators of the emergence of neuronal diversity within the developing spinal cord. As such, the two paralogous proteins Pax3 and Pax7 regulate the specification of progenitor cells within the intermediate neural tube, by defining a neat segregation between those fated to form motor circuits and those involved in the integration of sensory inputs. To attain insights into the molecular means by which they control this process, we have performed detailed phenotypic analyses of the intermediate spinal interneurons (IN), namely the dI6, V0, V0 and V1 populations in compound null mutants for Pax3 and Pax7. This has revealed that the levels of Pax3/7 proteins determine both the dorso-ventral extent and the number of cells produced in each subpopulation; with increasing levels leading to the dorsalisation of their fate. Furthermore, thanks to the examination of mutants in which Pax3 transcriptional activity is skewed either towards repression or activation, we demonstrate that this cell diversification process is mainly dictated by Pax3/7 ability to repress gene expression. Consistently, we show that Pax3 and Pax7 inhibit the expression of Dbx1 and of its repressor Prdm12, fate determinants of the V0 and V1 interneurons, respectively. Notably, we provide evidence for the activity of several cis-regulatory modules of Dbx1 to be sensitive to Pax3 and Pax7 transcriptional activity levels. Altogether, our study provides insights into how the redundancy within a TF family, together with discrete dynamics of expression profiles of each member, are exploited to generate cellular diversity. Furthermore, our data supports the model whereby cell fate choices in the neural tube do not rely on binary decisions but rather on inhibition of multiple alternative fates.
转录因子是发育中的脊髓内神经元多样性出现的关键协调者。因此,两个同源蛋白Pax3和Pax7通过明确注定形成运动回路的细胞与参与感觉输入整合的细胞之间的清晰分隔,来调节中间神经管内祖细胞的特化。为了深入了解它们控制这一过程的分子机制,我们对中间脊髓中间神经元(IN),即Pax3和Pax7复合无效突变体中的dI6、V0、V0和V1群体进行了详细的表型分析。这揭示了Pax3/7蛋白的水平决定了每个亚群中细胞产生的背腹范围和数量;水平升高会导致其命运向背侧化。此外,通过对Pax3转录活性偏向抑制或激活的突变体的研究,我们证明这种细胞多样化过程主要由Pax3/7抑制基因表达 的能力决定。一致地,我们表明Pax3和Pax7分别抑制Dbx1及其阻遏物Prdm12的表达,Dbx1和Prdm12分别是V0和V1中间神经元的命运决定因素。值得注意的是,我们提供了证据表明Dbx1的几个顺式调节模块的活性对Pax3和Pax7转录活性水平敏感。总之,我们的研究深入了解了转录因子家族内的冗余以及每个成员表达谱的离散动态如何被利用来产生细胞多样性。此外,我们的数据支持神经管中的细胞命运选择不依赖于二元决策而是依赖于对多种替代命运的抑制这一模型。