Suppr超能文献

翼状磷酸化是嗜酸热硫化叶菌中Lrs14型生物膜和运动调节因子AbfR1的主要功能决定因素。

Wing phosphorylation is a major functional determinant of the Lrs14-type biofilm and motility regulator AbfR1 in Sulfolobus acidocaldarius.

作者信息

Li Lingling, Banerjee Ankan, Bischof Lisa Franziska, Maklad Hassan Ramadan, Hoffmann Lena, Henche Anna-Lena, Veliz Fabian, Bildl Wolfgang, Schulte Uwe, Orell Alvaro, Essen Lars-Oliver, Peeters Eveline, Albers Sonja-Verena

机构信息

Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.

Structural Biochemistry, Department of Chemistry, Philipps University of Marburg, Marburg, Germany.

出版信息

Mol Microbiol. 2017 Sep;105(5):777-793. doi: 10.1111/mmi.13735. Epub 2017 Jul 7.

Abstract

In response to a variety of environmental cues, prokaryotes can switch between a motile and a sessile, biofilm-forming mode of growth. The regulatory mechanisms and signaling pathways underlying this switch are largely unknown in archaea but involve small winged helix-turn-helix DNA-binding proteins of the archaea-specific Lrs14 family. Here, we study the Lrs14 member AbfR1 of Sulfolobus acidocaldarius. Small-angle X-ray scattering data are presented, which are consistent with a model of dimeric AbfR1 in which dimerization occurs via an antiparallel coiled coil as suggested by homology modeling. Furthermore, solution structure data of AbfR1-DNA complexes suggest that upon binding DNA, AbfR1 induces deformations in the DNA. The wing residues tyrosine 84 and serine 87, which are phosphorylated in vivo, are crucial to establish stable protein-DNA contacts and their substitution with a negatively charged glutamate or aspartate residue inhibits formation of a nucleoprotein complex. Furthermore, mutation abrogates the cellular abundance and transcription regulatory function of AbfR1 and thus affects the resulting biofilm and motility phenotype of S. acidocaldarius. This work establishes a novel wHTH DNA-binding mode for Lrs14-like proteins and hints at an important role for protein phosphorylation as a signal transduction mechanism for the control of biofilm formation and motility in archaea.

摘要

响应各种环境信号,原核生物可以在运动性生长模式和固着性、形成生物膜的生长模式之间切换。在古菌中,这种切换背后的调控机制和信号通路在很大程度上尚不清楚,但涉及古菌特异性Lrs14家族的小翼螺旋-转角-螺旋DNA结合蛋白。在这里,我们研究了嗜酸热硫化叶菌的Lrs14成员AbfR1。给出了小角X射线散射数据,这些数据与同源建模所暗示的二聚体AbfR1模型一致,其中二聚化通过反平行卷曲螺旋发生。此外,AbfR1-DNA复合物的溶液结构数据表明,在结合DNA时,AbfR1会诱导DNA变形。在体内被磷酸化的翼残基酪氨酸84和丝氨酸87对于建立稳定的蛋白质-DNA接触至关重要,用带负电荷的谷氨酸或天冬氨酸残基取代它们会抑制核蛋白复合物的形成。此外,突变消除了AbfR1的细胞丰度和转录调控功能,从而影响嗜酸热硫化叶菌产生的生物膜和运动表型。这项工作为Lrs14样蛋白建立了一种新的wHTH DNA结合模式,并暗示蛋白质磷酸化作为古菌中控制生物膜形成和运动的信号转导机制具有重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验