Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Vienna, Austria; Department of Applied Science and Technology (DISAT), Politecnico di Torino, Turin, Italy.
Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, Universität Wien, Vienna, Austria.
Bioresour Technol. 2017 Oct;241:775-786. doi: 10.1016/j.biortech.2017.05.211. Epub 2017 Jun 2.
Trace element (TE) requirements of Methanothermobacter okinawensis and Methanothermobacter marburgensis were examined in silico, and using closed batch and fed-batch cultivation experiments. In silico analysis revealed genomic differences among the transport systems and enzymes related to the archaeal Wood-Ljungdahl pathway of these two methanogens. M. okinawensis responded to rising concentrations of TE by increasing specific growth rate (µ) and volumetric productivity (MER) during closed batch cultivation, and can grow and produce methane (CH) during fed-batch cultivation. M. marburgensis showed higher µ and MER during fed-batch cultivation and was therefore prioritized for subsequent optimization of CO-based biological CH production. Multiple-parameter cultivation dependency on growth and productivity of M. marburgensis was finally examined using exponential fed-batch cultivation at different medium-, TE- and sulphide dilution rates, and different gas inflow rates. MER of 476mmolLh and µ of 0.69h were eventually obtained during exponential fed-batch cultivations employing M. marburgensis.
运用密闭批式和补料分批培养实验,对古菌 Methanothermobacter okinawensis 和 Methanothermobacter marburgensis 的微量元素(TE)需求进行了计算机模拟分析。计算机模拟分析揭示了这两种产甲烷菌古菌 Wood-Ljungdahl 途径相关的转运系统和酶的基因组差异。在密闭批式培养过程中,M.okinawensis 通过提高比生长速率(µ)和体积产甲烷效率(MER)来应对 TE 浓度的升高,并能在补料分批培养过程中生长和产生甲烷(CH)。M.marburgensis 在补料分批培养过程中表现出更高的µ和 MER,因此被优先用于随后优化基于 CO 的生物 CH 生产。最后,采用不同培养基、TE 和硫化物稀释率以及不同气体流入率的指数补料分批培养,对 M.marburgensis 的生长和生产力的多参数培养依赖性进行了检验。在采用 M.marburgensis 的指数补料分批培养过程中,最终获得了 476mmolLh 的 MER 和 0.69h 的 µ。