Escuela de Química y Farmacia, Facultad de Farmacia, Universidad de Valparaíso, Avenida Gran Bretaña 1093, Valparaíso, Chile.
Laboratorio de Biología de la Reproducción y del Desarrollo, Instituto de Biología, Facultad de Ciencias, Universidad de Valparaíso, Avenida Gran Bretaña 1111, Valparaíso, Chile.
Mater Sci Eng C Mater Biol Appl. 2017 Oct 1;79:821-830. doi: 10.1016/j.msec.2017.05.116. Epub 2017 May 17.
Biologically active biomaterials as biopolymers and hydrogels have been used in medical applications providing favorable results in tissue engineering. In this research, a wound dressing device was designed by integration of an autologous clot hydrogel carrying mesenchymal stem-cells onto a biopolymeric scaffold. This hybrid biomaterial was tested in-vitro and in-vivo, and used in a human clinical case. The biopolymeric scaffold was made with gelatin, chitosan and hyaluronic acid, using a freeze-drying method. The scaffold was a porous material which was designed evaluating both physical properties (glass transition, melting temperature and pore size) and biological properties (cell viability and fibronectin expression). Two types of chitosan (120 and 300kDa) were used to manufacture the scaffold, being the high molecular weight the most biologically active and stable after sterilization with gamma irradiation (25kGy). A clot hydrogel was formulated with autologous plasma and calcium chloride, using an approach based on design of experiments. The optimum hydrogel was used to incorporate cells onto the porous scaffold, forming a wound dressing biomaterial. The wound dressing device was firstly tested in-vitro using human cells, and then, its biosecurity was evaluated in-vivo using a rabbit model. The in-vitro results showed high cell viability after one week (99.5%), high mitotic index (19.8%) and high fibronectin expression. The in-vivo application to rabbits showed adequate biodegradability capacity (between 1 and 2weeks), and the histological evaluation confirmed absence of rejection signs and reepithelization on the wound zone. Finally, the wound dressing biomaterial was used in a single human case to implant autologous cells on a skin surgery. The medical examination indicated high biocompatibility, partial biodegradation at one week, early regeneration capacity at 4weeks and absence of rejection signs.
具有生物活性的生物材料,如生物聚合物和水凝胶,已被用于医学应用,在组织工程中取得了良好的效果。在这项研究中,通过将携带间充质干细胞的自体凝块水凝胶整合到生物聚合物支架上,设计了一种伤口敷料装置。这种混合生物材料在体外和体内进行了测试,并在一个人体临床病例中使用。生物聚合物支架是由明胶、壳聚糖和透明质酸制成的,使用冷冻干燥法。支架是一种多孔材料,在评估物理性能(玻璃化转变温度、熔点和孔径)和生物性能(细胞活力和纤维连接蛋白表达)时都进行了设计。使用两种类型的壳聚糖(120 和 300kDa)来制造支架,其中高分子量的壳聚糖在经过伽马辐照(25kGy)消毒后最具生物活性和稳定性。自体血浆和氯化钙用于配制凝块水凝胶,采用基于实验设计的方法。优化的水凝胶用于将细胞掺入多孔支架中,形成伤口敷料生物材料。该伤口敷料装置首先在体外使用人细胞进行测试,然后在体内使用兔模型评估其生物安全性。体外结果表明,一周后细胞活力高(99.5%),有丝分裂指数高(19.8%),纤维连接蛋白表达高。在兔体内应用表明,该材料具有足够的生物降解能力(1-2 周之间),组织学评估证实伤口区域无排斥迹象和再上皮化。最后,该伤口敷料生物材料在一个人体病例中用于在皮肤手术中植入自体细胞。医学检查表明其具有高生物相容性,一周时部分可生物降解,四周时再生能力早期出现,无排斥迹象。