Suppr超能文献

诱导黏膜IgA:疫苗佐剂和递送系统面临的挑战

Inducing Mucosal IgA: A Challenge for Vaccine Adjuvants and Delivery Systems.

作者信息

Boyaka Prosper N

机构信息

Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210

出版信息

J Immunol. 2017 Jul 1;199(1):9-16. doi: 10.4049/jimmunol.1601775.

Abstract

Mucosal IgA or secretory IgA (SIgA) are structurally equipped to resist chemical degradation in the harsh environment of mucosal surfaces and enzymes of host or microbial origin. Production of SIgA is finely regulated, and distinct T-independent and T-dependent mechanisms orchestrate Ig α class switching and SIgA responses against commensal and pathogenic microbes. Most infectious pathogens enter the host via mucosal surfaces. To provide a first line of protection at these entry ports, vaccines are being developed to induce pathogen-specific SIgA in addition to systemic immunity achieved by injected vaccines. Mucosal or epicutaneous delivery of vaccines helps target the inductive sites for SIgA responses. The efficacy of such vaccines relies on the identification and/or engineering of vaccine adjuvants capable of supporting the development of SIgA alongside systemic immunity and delivery systems that improve vaccine delivery to the targeted anatomic sites and immune cells.

摘要

黏膜IgA或分泌型IgA(SIgA)在结构上能够抵抗黏膜表面恶劣环境以及宿主或微生物来源的酶对其造成的化学降解。SIgA的产生受到精细调控,不同的非T细胞依赖性和T细胞依赖性机制共同协调Igα类别转换以及针对共生微生物和致病微生物的SIgA应答。大多数传染性病原体通过黏膜表面进入宿主。为了在这些入口处提供第一道防线,除了注射疫苗所实现的全身免疫外,人们还在研发能诱导病原体特异性SIgA的疫苗。黏膜或经皮接种疫苗有助于靶向诱导SIgA应答的部位。此类疫苗的功效依赖于能够在支持全身免疫的同时促进SIgA产生的疫苗佐剂的鉴定和/或工程改造,以及能改善疫苗向目标解剖部位和免疫细胞递送的递送系统。

相似文献

1
Inducing Mucosal IgA: A Challenge for Vaccine Adjuvants and Delivery Systems.
J Immunol. 2017 Jul 1;199(1):9-16. doi: 10.4049/jimmunol.1601775.
2
Strategies for mucosal vaccine development.
Am J Trop Med Hyg. 1999 Apr;60(4 Suppl):35-45. doi: 10.4269/ajtmh.1999.60.35.
5
New horizon of mucosal immunity and vaccines.
Curr Opin Immunol. 2009 Jun;21(3):352-8. doi: 10.1016/j.coi.2009.04.002. Epub 2009 Jun 1.
6
[Mucosal immunity and vaccine development].
Med Sci (Paris). 2007 Apr;23(4):371-8. doi: 10.1051/medsci/2007234371.
7
Induction of secretory immunity and memory at mucosal surfaces.
Vaccine. 2007 Jul 26;25(30):5467-84. doi: 10.1016/j.vaccine.2006.12.001. Epub 2006 Dec 15.
8
Mucosal vaccines: a paradigm shift in the development of mucosal adjuvants and delivery vehicles.
APMIS. 2015 Apr;123(4):275-88. doi: 10.1111/apm.12351. Epub 2015 Jan 29.
9
10
New advances in mucosal vaccination.
Immunol Lett. 2014 Oct;161(2):204-6. doi: 10.1016/j.imlet.2014.01.006. Epub 2014 Jan 21.

引用本文的文献

1
Mucosal immunity and vaccination strategies: current insights and future perspectives.
Mol Biomed. 2025 Aug 20;6(1):57. doi: 10.1186/s43556-025-00301-7.
2
Targeting mucosal immunity in malaria control: the underexplored role of IgA.
Front Malar. 2025;3. doi: 10.3389/fmala.2025.1557371. Epub 2025 Jun 24.
5
Overview of the Q fever vaccine development: current status and future prospects.
Antonie Van Leeuwenhoek. 2025 May 31;118(7):85. doi: 10.1007/s10482-025-02094-9.
6
Gut microbiota modulate immune responses to orally and parenterally administered rotavirus in mice.
NPJ Vaccines. 2025 Apr 20;10(1):79. doi: 10.1038/s41541-025-01126-9.
9
A broad spectrum Shigella vaccine based on VirG multiepitope region produced in a cell-free system.
NPJ Vaccines. 2025 Jan 13;10(1):6. doi: 10.1038/s41541-025-01064-6.
10
Tuning Helical Peptide Nanofibers as a Sublingual Vaccine Platform for a Variety of Peptide Epitopes.
Adv Healthc Mater. 2025 Jan;14(3):e2402055. doi: 10.1002/adhm.202402055. Epub 2024 Dec 15.

本文引用的文献

1
Sublingual targeting of STING with 3'3'-cGAMP promotes systemic and mucosal immunity against anthrax toxins.
Vaccine. 2017 Apr 25;35(18):2511-2519. doi: 10.1016/j.vaccine.2017.02.064. Epub 2017 Mar 24.
3
Clathrin light chains' role in selective endocytosis influences antibody isotype switching.
Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):9816-21. doi: 10.1073/pnas.1611189113. Epub 2016 Aug 18.
4
The microbiota in adaptive immune homeostasis and disease.
Nature. 2016 Jul 7;535(7610):75-84. doi: 10.1038/nature18848.
5
An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells.
Mucosal Immunol. 2017 Mar;10(2):373-384. doi: 10.1038/mi.2016.57. Epub 2016 Jun 29.
6
Expression and assembly of cholera toxin B subunit and domain III of dengue virus 2 envelope fusion protein in transgenic potatoes.
Protein Expr Purif. 2017 Nov;139:57-62. doi: 10.1016/j.pep.2016.06.006. Epub 2016 Jun 19.
7
IgA production requires B cell interaction with subepithelial dendritic cells in Peyer's patches.
Science. 2016 May 13;352(6287):aaf4822. doi: 10.1126/science.aaf4822.
8
A novel adjuvanted capsule based strategy for oral vaccination against infectious diarrhoeal pathogens.
J Control Release. 2016 Jul 10;233:162-73. doi: 10.1016/j.jconrel.2016.05.001. Epub 2016 May 5.
9
Peyer's patches: organizing B-cell responses at the intestinal frontier.
Immunol Rev. 2016 May;271(1):230-45. doi: 10.1111/imr.12400.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验