Maizels Leonid, Huber Irit, Arbel Gil, Tijsen Anke J, Gepstein Amira, Khoury Asaad, Gepstein Lior
From the Rappaport Faculty of Medicine and Research Institute (L.M., I.H., G.A., A.J.T., A.G., L.G.); and Rambam Health Care Campus; Technion-Institute of Technology; Haifa, Israel (A.K., L.G.).
Circ Arrhythm Electrophysiol. 2017 Jun;10(6). doi: 10.1161/CIRCEP.116.004725.
Catecholaminergic polymorphic ventricular tachycardia type 2 (CPVT2) results from autosomal recessive mutations, causing abnormal Ca-handling and malignant ventricular arrhythmias. We aimed to establish a patient-specific human induced pluripotent stem cell (hiPSC) model of CPVT2 and to use the generated hiPSC-derived cardiomyocytes to gain insights into patient-specific disease mechanism and pharmacotherapy.
hiPSC cardiomyocytes were derived from a CPVT2 patient (D307H- mutation) and from healthy controls. Laser-confocal Ca and voltage imaging showed significant Ca-transient irregularities, marked arrhythmogenicity manifested by early afterdepolarizations and triggered arrhythmias, and reduced threshold for store overload-induced Ca-release events in the CPVT2-hiPSC cardiomyocytes when compared with healthy control cells. Pharmacological studies revealed the prevention of adrenergic-induced arrhythmias by β-blockers (propranolol and carvedilol), flecainide, and the neuronal sodium-channel blocker riluzole; a direct antiarrhythmic action of carvedilol (independent of its α/β-adrenergic blocking activity), flecainide, and riluzole; and suppression of abnormal Ca cycling by the ryanodine stabilizer JTV-519 and carvedilol. Mechanistic insights were gained on the different antiarrhythmic actions of the aforementioned drugs, with carvedilol and JTV-519 (but not flecainide or riluzole) acting primarily through sarcoplasmic reticulum stabilization. Finally, comparable outcomes were found between flecainide and labetalol antiarrhythmic effects in vitro and the clinical results in the same patient.
These results demonstrate the ability of hiPSCs cardiomyocytes to recapitulate CPVT2 disease phenotype and drug response in the culture dish, to provide novel insights into disease and drug therapy mechanisms, and potentially to tailor patient-specific drug therapy.
2型儿茶酚胺能多形性室性心动过速(CPVT2)由常染色体隐性突变引起,导致钙处理异常和恶性室性心律失常。我们旨在建立一个CPVT2患者特异性的人诱导多能干细胞(hiPSC)模型,并利用所生成的hiPSC来源的心肌细胞深入了解患者特异性疾病机制和药物治疗。
hiPSC心肌细胞来源于一名CPVT2患者(D307H突变)和健康对照者。激光共聚焦钙和电压成像显示,与健康对照细胞相比,CPVT2-hiPSC心肌细胞存在显著的钙瞬变不规则性、以早期后除极和触发心律失常表现出的明显致心律失常性,以及储存过载诱导的钙释放事件阈值降低。药理学研究表明,β受体阻滞剂(普萘洛尔和卡维地洛)、氟卡尼和神经元钠通道阻滞剂利鲁唑可预防肾上腺素能诱导的心律失常;卡维地洛(独立于其α/β肾上腺素能阻断活性)、氟卡尼和利鲁唑具有直接抗心律失常作用;ryanodine稳定剂JTV-519和卡维地洛可抑制异常钙循环。对上述药物的不同抗心律失常作用获得了机制性见解,卡维地洛和JTV-519(而非氟卡尼或利鲁唑)主要通过肌浆网稳定起作用。最后,在体外发现氟卡尼和拉贝洛尔的抗心律失常作用与同一名患者的临床结果具有可比性。
这些结果证明了hiPSC心肌细胞在培养皿中重现CPVT2疾病表型和药物反应的能力,为疾病和药物治疗机制提供了新的见解,并有可能定制患者特异性药物治疗。