Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
Department of Medical Microbiology & Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands.
Antimicrob Agents Chemother. 2017 Aug 24;61(9). doi: 10.1128/AAC.00267-17. Print 2017 Sep.
The lack of new antibiotics has prompted investigation of the combination of two existing agents-cefepime, a broad-spectrum cephalosporin, and tazobactam-to broaden their efficacy against extended-spectrum beta-lactamase (ESBL)-producing We determined the pharmacokinetic (PK) and pharmacodynamic (PD) properties of the combination in a murine neutropenic thigh model in order to establish its exposure-response relationships (ERRs). The PK of cefepime were determined for five doses; that of tazobactam was determined in earlier studies (Melchers et al., Antimicrob Agents Chemother 59:3373-3376, 2015, https://doi.org/10.1128/AAC.04402-14). The PK were linear for both compounds. The estimated mean (standard deviation [SD]) half-life of cefepime was 0.33 (0.12) h, and that of tazobactam was 0.176 (0.026) h; the volumes of distribution () were 0.73 liters/kg and 1.14 liters/kg, respectively. PD studies of cefepime administered every 2 h (q2h) with or without tazobactam, including dose fractionation studies of tazobactam, were performed against six ESBL-producing isolates. A sigmoidal maximum-effect () model was fitted to the data. In the dose fractionation study, the q2h regimen was more efficacious than the q4h and q6h regimens, indicating time-dependent activity of tazobactam. The threshold concentration ( ) best correlating with tazobactam efficacy was 0.25 mg/liter, as evidenced by the best fit of the percentage of time above the threshold concentration (%> ) and response. A mean %> of 24.6% (range, 11.4 to 36.3%) for a of 0.25 mg/liter was required to obtain a bacteriostatic effect. We conclude that tazobactam enhanced the effect of cefepime in otherwise resistant isolates of and that the %> of 0.25 mg/liter best correlated with efficacy. These studies provide the basis for the development of human dosing regimens for this combination.
由于缺乏新的抗生素,人们研究了两种现有药物——头孢吡肟(一种广谱头孢菌素)和他唑巴坦——的联合用药,以扩大其对产超广谱β-内酰胺酶(ESBL)的疗效。为了确定其暴露反应关系(ERR),我们在中性粒细胞减少的鼠大腿模型中测定了该联合用药的药代动力学(PK)和药效学(PD)特性。头孢吡肟的 PK 已确定了五个剂量;他唑巴坦的 PK 在之前的研究中已经确定(Melchers 等人,《抗菌药物化学治疗杂志》59:3373-3376,2015,https://doi.org/10.1128/AAC.04402-14)。这两种化合物的 PK 均呈线性。头孢吡肟的估计平均(标准偏差 [SD])半衰期为 0.33(0.12)小时,他唑巴坦的半衰期为 0.176(0.026)小时;分布体积(Vd)分别为 0.73 升/千克和 1.14 升/千克。用头孢吡肟每 2 小时(q2h)给药,联合或不联合他唑巴坦进行 PD 研究,包括他唑巴坦的剂量分割研究,针对 6 株产 ESBL 的分离株进行。数据拟合了一个 sigmoidal 最大效应(Emax)模型。在剂量分割研究中,q2h 方案比 q4h 和 q6h 方案更有效,表明他唑巴坦具有时间依赖性活性。与他唑巴坦疗效相关性最好的阈值浓度(Cmin)为 0.25 毫克/升,这一点可以从时间大于阈值浓度的百分比(%>)和反应的最佳拟合中得到证明。为了获得抑菌效果,需要达到 0.25 毫克/升的 Cmin 时的平均 %>24.6%(范围 11.4%至 36.3%)。我们得出结论,他唑巴坦增强了头孢吡肟在其他耐药菌株中的作用,而 0.25 毫克/升的 %>与疗效相关性最好。这些研究为该联合用药的人体给药方案的制定提供了依据。