Suppr超能文献

弹跳液滴与超疏水基底间的热交换。

Heat exchange between a bouncing drop and a superhydrophobic substrate.

机构信息

Department of Mechanical Engineering, Boston University, Boston, MA 02215.

Department of Mechanical Engineering, Boston University, Boston, MA 02215

出版信息

Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):6930-6935. doi: 10.1073/pnas.1700197114. Epub 2017 Jun 19.

Abstract

The ability to enhance or limit heat transfer between a surface and impacting drops is important in applications ranging from industrial spray cooling to the thermal regulation of animals in cold rain. When these surfaces are micro/nanotextured and hydrophobic, or superhydrophobic, an impacting drop can spread and recoil over trapped air pockets so quickly that it can completely bounce off the surface. It is expected that this short contact time limits heat transfer; however, the amount of heat exchanged and precise role of various parameters, such as the drop size, are unknown. Here, we demonstrate that the amount of heat exchanged between a millimeter-sized water drop and a superhydrophobic surface will be orders of magnitude less when the drop bounces than when it sticks. Through a combination of experiments and theory, we show that the heat transfer process on superhydrophobic surfaces is independent of the trapped gas. Instead, we find that, for a given spreading factor, the small fraction of heat transferred is controlled by two dimensionless groupings of physical parameters: one that relates the thermal properties of the drop and bulk substrate and the other that characterizes the relative thermal, inertial, and capillary dynamics of the drop.

摘要

增强或限制表面和撞击液滴之间的传热能力在从工业喷雾冷却到寒冷雨中动物的热调节等应用中非常重要。当这些表面具有微/纳米结构和疏水性或超疏水性时,撞击液滴可以迅速扩散并在被困的气穴上反弹,以至于它可以完全从表面弹开。预计这种短接触时间会限制传热;然而,热交换的量以及各种参数的精确作用,例如液滴大小,尚不清楚。在这里,我们证明当液滴弹开时,毫米大小的水滴与超疏水表面之间交换的热量将减少几个数量级,而不是当液滴粘住时。通过实验和理论的结合,我们表明超疏水表面上的传热过程与被困气体无关。相反,我们发现,对于给定的扩展因子,传递的热量的一小部分由两个无量纲物理参数分组控制:一个与液滴和基体的热性质有关,另一个与液滴的相对热、惯性和毛细动力学有关。

相似文献

1
Heat exchange between a bouncing drop and a superhydrophobic substrate.弹跳液滴与超疏水基底间的热交换。
Proc Natl Acad Sci U S A. 2017 Jul 3;114(27):6930-6935. doi: 10.1073/pnas.1700197114. Epub 2017 Jun 19.
2
Surfactant solutions and porous substrates: spreading and imbibition.表面活性剂溶液与多孔基质:铺展与吸液
Adv Colloid Interface Sci. 2004 Nov 29;111(1-2):3-27. doi: 10.1016/j.cis.2004.07.007.
4
Reducing the contact time of a bouncing drop.缩短弹跳液滴的接触时间。
Nature. 2013 Nov 21;503(7476):385-8. doi: 10.1038/nature12740.
5
Cold-induced spreading of water drops on hydrophobic surfaces.低温诱导水滴在疏水表面的铺展
Langmuir. 2015 Feb 24;31(7):2120-6. doi: 10.1021/la503620a. Epub 2015 Feb 9.
7
Drop-on-Drop Impact Dynamics on a Superhydrophobic Surface.超疏水表面上的逐滴碰撞动力学
Langmuir. 2021 Nov 2;37(43):12629-12642. doi: 10.1021/acs.langmuir.1c01779. Epub 2021 Oct 20.
8
Testing the performance of superhydrophobic aluminum surfaces.测试超疏水铝表面的性能。
J Colloid Interface Sci. 2017 Dec 15;508:129-136. doi: 10.1016/j.jcis.2017.08.032. Epub 2017 Aug 12.
9
Pancake bouncing: simulations and theory and experimental verification.薄饼弹跳:模拟、理论及实验验证
Langmuir. 2014 Nov 4;30(43):13021-32. doi: 10.1021/la5033916. Epub 2014 Oct 21.

引用本文的文献

3
How a raindrop gets shattered on biological surfaces.雨滴在生物表面破碎的方式。
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):13901-13907. doi: 10.1073/pnas.2002924117. Epub 2020 Jun 8.
4
How localized force spreads on elastic contour feathers.弹性羽缘上局域力的传播。
J R Soc Interface. 2019 Nov 29;16(160):20190267. doi: 10.1098/rsif.2019.0267. Epub 2019 Nov 20.
5
Topography-Directed Hot-Water Super-Repellent Surfaces.地形导向的热水超疏水表面
Adv Sci (Weinh). 2019 Jul 30;6(18):1900798. doi: 10.1002/advs.201900798. eCollection 2019 Sep 18.
6
Two recipes for repelling hot water.两种驱热水的方法。
Nat Commun. 2019 Mar 29;10(1):1410. doi: 10.1038/s41467-019-09456-8.

本文引用的文献

2
Oil droplet self-transportation on oleophobic surfaces.油滴在疏油表面的自迁移。
Sci Adv. 2016 Jun 17;2(6):e1600148. doi: 10.1126/sciadv.1600148. eCollection 2016 Jun.
3
Designing durable icephobic surfaces.设计耐用的冰附着防护表面。
Sci Adv. 2016 Mar 11;2(3):e1501496. doi: 10.1126/sciadv.1501496. eCollection 2016 Mar.
4
Dynamic Leidenfrost Effect: Relevant Time and Length Scales.动态莱顿弗罗斯特效应:相关的时间和长度尺度
Phys Rev Lett. 2016 Feb 12;116(6):064501. doi: 10.1103/PhysRevLett.116.064501. Epub 2016 Feb 10.
7
Reducing the contact time of a bouncing drop.缩短弹跳液滴的接触时间。
Nature. 2013 Nov 21;503(7476):385-8. doi: 10.1038/nature12740.
8
Geometry of the vapor layer under a leidenfrost drop.莱顿弗罗斯特液滴下的蒸汽层的几何形状。
Phys Rev Lett. 2012 Aug 17;109(7):074301. doi: 10.1103/PhysRevLett.109.074301. Epub 2012 Aug 16.
10
Drop impact on superheated surfaces.液滴对过热表面的冲击。
Phys Rev Lett. 2012 Jan 20;108(3):036101. doi: 10.1103/PhysRevLett.108.036101.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验