Daniels Jeremy, Caetano Samantha-Jo, Huyer Dirk, Stephen Andrew, Fernandes John, Lytwyn Alice, Hoppe Fred M
Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, 200 Elizabeth St, Toronto, ON, Canada.
Mathematics and Statistics, McMaster University, 1200 Main St W, Hamilton, ON, Canada.
J Forensic Sci. 2017 Sep;62(5):1326-1331. doi: 10.1111/1556-4029.13437. Epub 2017 Jun 20.
To assess if Benford's law, a mathematical law used for quality assurance in accounting, can be applied as a quality assurance measure for the manner of death determination. We examined a regional forensic pathology service's monthly manner of death counts (N = 2352) from 2011 to 2013, and provincial monthly and weekly death counts from 2009 to 2013 (N = 81,831). We tested whether each dataset's leading digit followed Benford's law via the chi-square test. For each database, we assessed whether number 1 was the most common leading digit. The manner of death counts first digit followed Benford's law in all the three datasets. Two of the three datasets had 1 as the most frequent leading digit. The manner of death data in this study showed qualities consistent with Benford's law. The law has potential as a quality assurance metric in the manner of death determination for both small and large databases.
为评估用于会计质量保证的数学定律——本福特定律,是否可作为死亡方式判定的质量保证措施。我们检查了某地区法医病理学服务机构2011年至2013年的月度死亡方式计数(N = 2352),以及2009年至2013年该省的月度和周度死亡计数(N = 81,831)。我们通过卡方检验来测试每个数据集的首位数字是否遵循本福特定律。对于每个数据库,我们评估数字1是否为最常见的首位数字。在所有三个数据集中,死亡方式计数的首位数字均遵循本福特定律。三个数据集中有两个以1作为最频繁出现的首位数字。本研究中的死亡方式数据显示出与本福特定律一致的特征。该定律在大小数据库的死亡方式判定中都有作为质量保证指标的潜力。