Shakourian-Fard Mehdi, Heydari Hadiseh, Kamath Ganesh
Department of Chemical Engineering, Birjand University of Technology, Birjand, P.O. Box 97175/569, Iran.
Department of Chemistry, University of Missouri-Columbia, Columbia, MO, 65211, USA.
Chemphyschem. 2017 Sep 6;18(17):2328-2335. doi: 10.1002/cphc.201700512. Epub 2017 Jul 4.
Defect engineering potentially allows for dramatic tuning of the optoelectronic properties of two-dimensional materials. With the help of DFT calculations, a systematic study of DNA nucleobases adsorbed on hexagonal boron-nitride nanoflakes (h-BNNFs) with boron (V ) and nitrogen (V ) monovacancies is presented. The presence of V and V defects increases the binding strength of nucleobases by 9 and 34 kcal mol , respectively (h-BNNF-V >h-BNNF-V >h-BNNF). A more negative electrostatic potential at the V site makes the h-BNNF-V surface more reactive than that of h-BNNF-V , enabling H-bonding interactions with nucleobases. This binding energy difference affects the recovery time-a significant factor for developing DNA biosensors-of the surfaces in the order h-BNNF-V >h-BNNF-V >h-BNNF. The presence of V and V defect sites increases the electrical conductivity of the h-BNNF surface, V defects being more favorable than V sites. The blueshift of absorption peaks of the h-BNNF-V -nucleobase complexes, in contrast to the redshift observed for h-BNNF-V -nucleobase complexes, is attributed to their observed differences in binding energies, the HOMO-LUMO energy gap and other optoelectronic properties. Time-dependent DFT calculations reveal that the monovacant boron-nitride-sheet-nucleobase composites absorb visible light in the range 300-800 nm, thus making them suitable for light-emitting devices and sensing nucleobases in the visible region.
缺陷工程有可能实现对二维材料光电特性的显著调控。借助密度泛函理论(DFT)计算,对吸附在具有硼(V)和氮(V)单空位的六方氮化硼纳米片(h-BNNFs)上的DNA核碱基进行了系统研究。V和V缺陷的存在分别使核碱基的结合强度提高了9千卡/摩尔和34千卡/摩尔(h-BNNF-V>h-BNNF-V >h-BNNF)。V位点处更负的静电势使h-BNNF-V表面比h-BNNF-V表面更具反应性,从而能够与核碱基形成氢键相互作用。这种结合能差异按h-BNNF-V>h-BNNF-V >h-BNNF的顺序影响表面的恢复时间,而恢复时间是开发DNA生物传感器的一个重要因素。V和V缺陷位点的存在增加了h-BNNF表面的电导率,V缺陷比V位点更有利。与h-BNNF-V -核碱基复合物观察到的红移相反,h-BNNF-V -核碱基复合物吸收峰的蓝移归因于它们在结合能、最高占据分子轨道-最低未占据分子轨道(HOMO-LUMO)能隙和其他光电特性方面观察到的差异。含时DFT计算表明,单空位氮化硼片-核碱基复合材料在300-800纳米范围内吸收可见光,因此使其适用于发光器件以及在可见光区域传感核碱基。