Shakourian-Fard Mehdi, Kamath Ganesh
Birjand University of Technology, Department of Chemical Engineering, Birjand, P.O. Box 97175/569, Iran.
Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
Phys Chem Chem Phys. 2017 Feb 8;19(6):4383-4395. doi: 10.1039/c6cp07455c.
Defect engineering and non-covalent interaction strategies allow for dramatically tuning the optoelectronic properties of graphene. Using ab initio density functional theory (M06-2X/cc-pVDZ), we find that the nature of defects on the graphene nanoflakes (GNFs) and the size of defective GNF (DGNF) surfaces affect the binding energy (ΔE) of ionic liquids (ILs) and the UV-Vis absorption spectra of DGNFIL complexes. Further, our results indicate that increasing the size of DGNFs affects the geometrical structure of the surfaces and increases the binding energy of ILs by about 10%. Analysis based on AIM and EDA shows that the interactions between ILs and DGNFs are non-covalent in nature (dispersion energy being dominant) and associated with charge transfer between the IL and nanoflakes. A comparison between the ΔE values of ILs on DGNFs, GNFs, and h-BN nanoflakes (h-BNNF) shows that the presence of defects on the GNF surfaces increases the binding energy values as follows: DGNFIL > pristine GNFIL > h-BNNFIL. Our calculations indicate that increasing the size of DGNF surfaces leads to a decrease in the HOMO-LUMO energy gap (E) of the DGNF surfaces. Orbital energy and density of state calculations show that the E of DV(SW)-GNFs decreases upon IL adsorption and their Fermi energy level is shifted depending on the type of IL, thus enabling better conductivity. Reactivity descriptors generally indicate that the chemical potential (μ) and chemical hardness (η) of nanoflakes decrease upon IL adsorption, whereas the electrophilicity index (ω) increases. The UV-Vis absorption spectrum of DV-GNF and SW-GNF shows four bands in the visible spectrum which correspond to π → π* transitions with the absorption bands of SW-GNF appearing at higher wavelengths than those of DV-GNF. The most intense absorption bands in DV-GNF (λ = 348 nm) and SW-GNF (λ = 375 nm) are associated with electronic transitions HOMO-1 → LUMO+2 and HOMO → LUMO+1, respectively. In addition, these absorption bands undergo a red-shift by both increasing the size of the DV(SW)-GNF surfaces and IL adsorption. We also observe that the energy gaps and absorption spectra can be altered by varying the defect types and the type of IL adsorbate, where the defect types affect the spectral shapes of the bands and adsorbates at the first absorption peak, thus having potential application for light-emitting devices.
缺陷工程和非共价相互作用策略能够显著调节石墨烯的光电性能。使用从头算密度泛函理论(M06 - 2X/cc - pVDZ),我们发现石墨烯纳米片(GNFs)上缺陷的性质以及缺陷石墨烯纳米片(DGNF)表面的尺寸会影响离子液体(ILs)的结合能(ΔE)以及DGNF - IL络合物的紫外 - 可见吸收光谱。此外,我们的结果表明,增大DGNFs的尺寸会影响表面的几何结构,并使ILs的结合能增加约10%。基于AIM和EDA的分析表明,ILs与DGNFs之间的相互作用本质上是非共价的(色散能占主导),并且与IL和纳米片之间的电荷转移有关。DGNFs、GNFs和h - BN纳米片(h - BNNF)上ILs的ΔE值比较表明,GNF表面缺陷的存在会使结合能值按以下顺序增加:DGNF - IL > 原始GNF - IL > h - BNNF - IL。我们的计算表明,增大DGNF表面的尺寸会导致DGNF表面的最高已占分子轨道 - 最低未占分子轨道能隙(E)减小。轨道能量和态密度计算表明,IL吸附后DV(SW) - GNFs的E减小,并且它们的费米能级根据IL的类型发生移动,从而实现更好的导电性。反应性描述符通常表明,纳米片的化学势(μ)和化学硬度(η)在IL吸附后降低,而亲电性指数(ω)增加。DV - GNF和SW - GNF的紫外 - 可见吸收光谱在可见光谱中显示出四个谱带,它们对应于π → π*跃迁,SW - GNF的吸收带出现在比DV - GNF更高的波长处。DV - GNF(λ = 348 nm)和SW - GNF(λ = 375 nm)中最强的吸收带分别与电子跃迁HOMO - 1 → LUMO + 2和HOMO → LUMO + 1相关。此外,通过增大DV(SW) - GNF表面的尺寸和IL吸附,这些吸收带都会发生红移。我们还观察到,通过改变缺陷类型和IL吸附质的类型可以改变能隙和吸收光谱,其中缺陷类型会影响谱带的形状以及第一个吸收峰处的吸附质,因此在发光器件方面具有潜在应用。