Hisaki Ichiro, Ikenaka Nobuaki, Gomez Eduardo, Cohen Boiko, Tohnai Norimitsu, Douhal Abderrazzak
Department of Material and Life Science, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Departamento de Quimica Fisica, Facultad de Ciencias Ambientales y Bioquimica and INAMOL, Universidad de Castilla-La Mancha, Avenida Carlos III, S/N, 45071, Toledo, Spain.
Chemistry. 2017 Aug 25;23(48):11611-11619. doi: 10.1002/chem.201701893. Epub 2017 Aug 9.
Hydrogen-bonded organic frameworks (HOFs) have drawn unprecedented interest because of their high crystallinity as well as facile process for construction, deconstruction, and reassembly arising from reversible bond formation-dissociation. However, structural fragility and low stability frequently prevent formation of robust HOFs with permanent porosity. Here, we report that hexakis(4-carboxyphenyl)-hexaazatriphenylene (CPHAT) forms three dimensionally networked H-bonded framework CPHAT-1. Interestingly, the activated framework CPHAT-1 a retains not only permanent porosity but single-crystallinity, enabling precise structural characterization and property evaluation on a single crystal. Moreover, CPHAT-1 a retains its framework up to 339 °C or in hot water and in acidic aqueous solution. These results clearly show that even a simple H-bonding motif can be applied for the construction of robust HOFs, which creates a pathway to establish a new class of porous organic frameworks. We also characterize its uptake of gases and I , in addition to a detailed photophysical study (spectroscopy and dynamics of proton and charge transfers) of its unit in solution, and of its single crystal under fluorescence microscopy, in which we observed a marked strong anistropy and narrow distribution. The results bring new findings to the area of HOFs and their possible applications in science and technology.
氢键有机框架(HOFs)因其高结晶度以及由可逆键形成-解离产生的构建、解构和重新组装的简便过程而引起了前所未有的关注。然而,结构脆弱性和低稳定性经常阻碍具有永久孔隙率的坚固HOFs的形成。在此,我们报道六(4-羧基苯基)六氮杂三亚苯(CPHAT)形成三维网络状氢键框架CPHAT-1。有趣的是,活化后的框架CPHAT-1 a不仅保留了永久孔隙率,还保留了单晶性,从而能够对单晶进行精确的结构表征和性能评估。此外,CPHAT-1 a在高达339 °C的温度下,或在热水和酸性水溶液中都能保持其框架结构。这些结果清楚地表明,即使是简单的氢键基序也可用于构建坚固的HOFs,这为建立一类新型多孔有机框架开辟了道路。除了对其在溶液中的单元以及在荧光显微镜下的单晶进行详细的光物理研究(质子和电荷转移的光谱学和动力学)外,我们还表征了它对气体的吸附以及对碘的吸附,在荧光显微镜下我们观察到了明显的强各向异性和窄分布。这些结果为HOFs领域及其在科学技术中的可能应用带来了新的发现。