Hume Beth, Gabella Barbara, Hathaway Jeanne, Proescholdbell Scott, Sneddon Cristy, Brutsch Elizabeth, Hedin Riley, Drucker Christopher J
1 Department of Public Health, Injury Surveillance Program, Office of Statistics and Evaluation, Boston, MA, USA.
2 Department of Public Health and Environment, Denver, CO, USA.
Public Health Rep. 2017 Jul/Aug;132(4):488-495. doi: 10.1177/0033354917718061. Epub 2017 Jun 20.
In 2012, a consensus document was developed on drug overdose poisoning definitions. We took the opportunity to apply these new definitions to health care administrative data in 4 states. Our objective was to calculate and compare drug (particularly opioid) poisoning rates in these 4 states for 4 selected Injury Surveillance Workgroup 7 (ISW7) drug poisoning indicators, using 2 ISW7 surveillance definitions, Option A and Option B. We also identified factors related to the health care administrative data used by each state that might contribute to poisoning rate variations.
We used state-level hospital and emergency department (ED) discharge data to calculate age-adjusted rates for 4 drug poisoning indicators (acute drug poisonings, acute opioid poisonings, acute opioid analgesic poisonings, and acute or chronic opioid poisonings) using just the principal diagnosis or first-listed external cause-of-injury fields (Option A) or using all diagnosis or external cause-of-injury fields (Option B). We also calculated the high-to-low poisoning rate ratios to measure rate variations.
The average poisoning rates per 100 000 population for the 4 ISW7 poisoning indicators ranged from 11.2 to 216.4 (ED) and from 14.2 to 212.8 (hospital). For each indicator, ED rates were usually higher than were hospital rates. High-to-low rate ratios between states were lowest for the acute drug poisoning indicator (range, 1.5-1.6). Factors potentially contributing to rate variations included administrative data structure, accessibility, and submission regulations.
The ISW7 Option B surveillance definition is needed to fully capture the state burden of opioid poisonings. Efforts to control for factors related to administrative data, standardize data sources on a national level, and improve data source accessibility for state health departments would improve the accuracy of drug poisoning surveillance.
2012年制定了一份关于药物过量中毒定义的共识文件。我们借此机会将这些新定义应用于4个州的医疗保健管理数据。我们的目标是使用2种伤害监测工作组7(ISW7)监测定义(选项A和选项B),计算并比较这4个州针对4个选定的ISW7药物中毒指标的药物(尤其是阿片类药物)中毒率。我们还确定了与每个州使用的医疗保健管理数据相关的、可能导致中毒率差异的因素。
我们使用州级医院和急诊科(ED)出院数据,通过仅使用主要诊断或首个列出的外部伤害原因字段(选项A)或使用所有诊断或外部伤害原因字段(选项B),来计算4个药物中毒指标(急性药物中毒、急性阿片类药物中毒、急性阿片类镇痛药中毒以及急性或慢性阿片类药物中毒)的年龄调整率。我们还计算了高低中毒率比值以衡量率的差异。
4个ISW7中毒指标的每10万人口平均中毒率在急诊部分别为11.2至216.4,在医院部分别为14.2至212.8。对于每个指标,急诊率通常高于医院率。急性药物中毒指标的州间高低率比值最低(范围为1.5至1.6)。可能导致率差异的因素包括管理数据结构、可及性和提交规定。
需要采用ISW7选项B监测定义来全面掌握阿片类药物中毒的州负担情况。控制与管理数据相关的因素、在国家层面规范数据源以及提高州卫生部门对数据源的可及性,这些努力将提高药物中毒监测的准确性。