Suppr超能文献

基于 ICD-10-CM 的急诊阿片类药物中毒监测定义:电子健康记录病例确认研究。

ICD-10-CM-Based Definitions for Emergency Department Opioid Poisoning Surveillance: Electronic Health Record Case Confirmation Study.

机构信息

Kentucky Injury Prevention and Research Center, University of Kentucky, Lexington, KY, USA.

Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, USA.

出版信息

Public Health Rep. 2020 Mar/Apr;135(2):262-269. doi: 10.1177/0033354920904087. Epub 2020 Feb 10.

Abstract

OBJECTIVES

Valid opioid poisoning morbidity definitions are essential to the accuracy of national surveillance. The goal of our study was to estimate the positive predictive value (PPV) of case definitions identifying emergency department (ED) visits for heroin or other opioid poisonings, using billing records with (ICD-10-CM) codes.

METHODS

We examined billing records for ED visits from 4 health care networks (12 EDs) from October 2015 through December 2016. We conducted medical record reviews of representative samples to estimate the PPVs and 95% confidence intervals (CIs) of (1) first-listed heroin poisoning diagnoses (n = 398), (2) secondary heroin poisoning diagnoses (n = 102), (3) first-listed other opioid poisoning diagnoses (n = 452), and (4) secondary other opioid poisoning diagnoses (n = 103).

RESULTS

First-listed heroin poisoning diagnoses had an estimated PPV of 93.2% (95% CI, 90.0%-96.3%), higher than secondary heroin poisoning diagnoses (76.5%; 95% CI, 68.1%-84.8%). Among other opioid poisoning diagnoses, the estimated PPV was 79.4% (95% CI, 75.7%-83.1%) for first-listed diagnoses and 67.0% (95% CI, 57.8%-76.2%) for secondary diagnoses. Naloxone was administered in 867 of 1055 (82.2%) cases; 254 patients received multiple doses. One-third of all patients had a previous drug poisoning. Drug testing was ordered in only 354 cases.

CONCLUSIONS

The study findings suggest that heroin or other opioid poisoning surveillance definitions that include multiple diagnoses (first-listed and secondary) would identify a high percentage of true-positive cases.

摘要

目的

有效的阿片类药物中毒发病率定义对于国家监测的准确性至关重要。我们的研究目的是使用具有(ICD-10-CM)代码的计费记录来估计确定急诊(ED)就诊的海洛因或其他阿片类药物中毒病例定义的阳性预测值(PPV)。

方法

我们检查了来自 4 个医疗保健网络(12 个 ED)的 2015 年 10 月至 2016 年 12 月的 ED 就诊记录。我们对代表性样本进行了病历回顾,以估计(1)首次列出的海洛因中毒诊断(n = 398)、(2)次要海洛因中毒诊断(n = 102)、(3)首次列出的其他阿片类药物中毒诊断(n = 452)和(4)次要其他阿片类药物中毒诊断(n = 103)的 PPV 和 95%置信区间(CI)。

结果

首次列出的海洛因中毒诊断的估计 PPV 为 93.2%(95%CI,90.0%-96.3%),高于次要海洛因中毒诊断(76.5%;95%CI,68.1%-84.8%)。在其他阿片类药物中毒诊断中,首次列出的诊断的估计 PPV 为 79.4%(95%CI,75.7%-83.1%),而次要诊断的估计 PPV 为 67.0%(95%CI,57.8%-76.2%)。在 1055 例中的 867 例(82.2%)中给予了纳洛酮;254 例患者接受了多次剂量。三分之一的所有患者都有以前的药物中毒。仅在 354 例中订购了药物测试。

结论

研究结果表明,包含多个诊断(首次列出和次要诊断)的海洛因或其他阿片类药物中毒监测定义将确定高比例的真阳性病例。

相似文献

引用本文的文献

8
Wastewater Surveillance for Xylazine in Kentucky.肯塔基州对赛拉嗪的废水监测
AJPM Focus. 2024 Feb 9;3(3):100203. doi: 10.1016/j.focus.2024.100203. eCollection 2024 Jun.

本文引用的文献

2
Toxicosurveillance in the US opioid epidemic.美国阿片类药物流行期间的毒物监测
Int J Drug Policy. 2017 Aug;46:168-171. doi: 10.1016/j.drugpo.2017.05.057. Epub 2017 Jul 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验