School of Agriculture and Food Science, University of Queensland, Gatton Campus, Queensland 4343, Australia.
Cobb-Vantress Inc., Siloam Springs, Arkansas 72761-1030.
Poult Sci. 2017 Sep 1;96(9):3031-3038. doi: 10.3382/ps/pex151.
Accurately establishing the relationships among individuals lays the foundation for genetic analyses such as genome-wide association studies and identification of selection signatures. Of particular interest to the poultry industry are estimates of genetic merit based on molecular data. These estimates can be commercially exploited in marker-assisted breeding programs to accelerate genetic improvement. Here, we test the utility of a new method we have recently developed to estimate animal relatedness and applied it to genetic parameter estimation in commercial broilers. Our approach is based on the concept of data compression from information theory. Using the real-world compressor gzip to estimate normalized compression distance (NCD) we have built compression-based relationship matrices (CRM) for 988 chickens from 4 commercial broiler lines-2 male and 2 female lines. For all pairs of individuals, we found a strong negative relationship between the commonly used genomic relationship matrix (GRM) and NCD. This reflects the fact that "similarity" is the inverse of "distance." The CRM explained more genetic variation than the corresponding GRM in 2 of 3 phenotypes, with corresponding improvements in accuracy of genomic-enabled predictions of breeding value. A sliding-window version of the analysis highlighted haplotype regions of the genome apparently under selection in a line-specific manner. In the male lines, we retrieved high population-specific scores for IGF-1 and a cognate receptor, INSR. For the female lines, we detected an extreme score for a region containing a reproductive hormone receptor (GNRHR). We conclude that our compression-based method is a valid approach to established relationships and identify regions under selective pressure in commercial lines of broiler chickens.
准确建立个体之间的关系为遗传分析奠定了基础,例如全基因组关联研究和选择特征的鉴定。家禽业特别感兴趣的是基于分子数据的遗传优势估计。这些估计可以在标记辅助育种计划中得到商业利用,以加速遗传改良。在这里,我们测试了我们最近开发的一种新方法的效用,该方法用于估计动物亲缘关系,并将其应用于商业肉鸡的遗传参数估计。我们的方法基于信息理论中的数据压缩概念。使用真实世界的压缩程序 gzip 来估计归一化压缩距离(NCD),我们为来自 4 个商业肉鸡系的 988 只鸡构建了基于压缩的关系矩阵(CRM) - 2 个雄性系和 2 个雌性系。对于所有个体对,我们发现常用的基因组关系矩阵(GRM)和 NCD 之间存在很强的负相关关系。这反映了“相似性”是“距离”的倒数的事实。CRM 比相应的 GRM 解释了 3 个表型中的 2 个更多的遗传变异,同时提高了基因组预测育种值的准确性。分析的滑动窗口版本突出显示了在特定系中显然受到选择的基因组单倍型区域。在雄性系中,我们检索到 IGF-1 和同源受体 INSR 的高种群特异性分数。对于雌性系,我们检测到含有生殖激素受体(GNRHR)的区域的极端分数。我们得出结论,我们基于压缩的方法是一种有效的方法来建立关系,并确定商业肉鸡系中受选择压力影响的区域。