Suppr超能文献

纳米复合材料:合成、表征及其在超声辅助法去除偶氮染料中的应用:建模与优化

Nanocomposites: Synthesis, characterization and its application to removal azo dyes using ultrasonic assisted method: Modeling and optimization.

作者信息

Porhemmat Sima, Ghaedi Mehrorang, Rezvani Ali Reza, Azqhandi Mohammad Hossein Ahmadi, Bazrafshan Ali Akbar

机构信息

Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran.

Chemistry Department, Yasouj University, Yasouj 75918-74831, Iran.

出版信息

Ultrason Sonochem. 2017 Sep;38:530-543. doi: 10.1016/j.ultsonch.2017.03.053. Epub 2017 Mar 31.

Abstract

S-doped and Cu- and Co-doped TiO was synthesized by a sol-gel method and characterized by FE-SEM, XRD, EDX and FTIR. The Co/Cu/S-TiO nanocomposite loaded on the activated carbon as new nanoadsorbent was used for simultaneous removal of methylene blue (MB) and sunset yellow (SY) from aqueous solution by ultrasonic-assisted adsorption method. In this work, central composite design (CCD) and adaptive neuro-fuzzy inference system (ANFIS) as a support tool for examining data and making prediction are used to recognize and predict the removal percentage in MB and SY dye solution of different concentrations. The predictive capabilities of CCD and ANFIS are compared in terms of square correlation coefficient (R), root mean square error (RMSE), mean absolute error (MAE) and absolute average deviation (AAD) against the empirical data. It is found that the ANFIS model shows the better prediction accuracy than the CCD model. In addition to, the optimization of ultrasound-assisted simultaneous removal of methylene blue (MB) and sunset yellow (SY) on the Co/Cu/S-TiO/AC nanocomposite by response surface methodology (RSM) for the optimization of the process variables, such as MB and SY concentrations, Co/Cu/S-TiO/AC nanocomposite dose and sonication time, was investigated. Various isotherm and kinetic models were used in the experimental data. The results revealed that the langmuir isotherm and pseudo-second-order model had a better correlation than the other models.

摘要

采用溶胶-凝胶法合成了S掺杂以及Cu和Co共掺杂的TiO,并通过场发射扫描电子显微镜(FE-SEM)、X射线衍射仪(XRD)、能谱仪(EDX)和傅里叶变换红外光谱仪(FTIR)对其进行了表征。将负载在活性炭上的Co/Cu/S-TiO纳米复合材料作为新型纳米吸附剂,采用超声辅助吸附法同时从水溶液中去除亚甲基蓝(MB)和日落黄(SY)。在这项工作中,采用中心复合设计(CCD)和自适应神经模糊推理系统(ANFIS)作为检查数据和进行预测的支持工具,以识别和预测不同浓度的MB和SY染料溶液中的去除率。根据平方相关系数(R)、均方根误差(RMSE)、平均绝对误差(MAE)和绝对平均偏差(AAD),将CCD和ANFIS的预测能力与实验数据进行了比较。结果发现,ANFIS模型的预测精度优于CCD模型。此外,还通过响应面法(RSM)对Co/Cu/S-TiO/AC纳米复合材料上超声辅助同时去除亚甲基蓝(MB)和日落黄(SY)的过程进行了优化,以优化诸如MB和SY浓度、Co/Cu/S-TiO/AC纳米复合材料剂量和超声处理时间等工艺变量。在实验数据中使用了各种等温线和动力学模型。结果表明,朗缪尔等温线和伪二级模型的相关性优于其他模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验