Newman Morgan, Halter Lena, Lim Anne, Lardelli Michael
Alzheimer's Disease Genetics Laboratory, Centre for Molecular Pathology, School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.
PLoS One. 2017 Jun 21;12(6):e0179859. doi: 10.1371/journal.pone.0179859. eCollection 2017.
Mutations in the human genes PRESENILIN1 (PSEN1), PRESENILIN2 (PSEN2) and AMYLOID BETA A4 PRECURSOR PROTEIN (APP) have been identified in familial Alzheimer's disease (AD). The length of mitochondrion-endoplasmic reticulum (M-ER) appositions is increased in Psen1-/-/Psen2-/- double knockout murine embryonic fibroblasts and in fibroblasts from AD-affected individuals. Development of an easily accessible, genetically manipulable, in vivo system for studying M-ER appositions would be valuable so we attempted to manipulate M-ER apposition length in zebrafish (Danio rerio) embryos. We injected fertilized zebrafish eggs with antisense morpholino oligonucleotides (MOs) that inhibit expression of zebrafish familial AD gene orthologues psen1 and psen2. Furthermore, we treated zebrafish embryos with DAPT (a highly specific γ-secretase inhibitor) or with sodium azide (to mimic partially hypoxic conditions). We then analyzed M-ER apposition in an identified, presumably proliferative neural cell type using electron microscopy. Our analysis showed no significant differences in M-ER apposition lengths at 48 hours post fertilization (hpf) between psen1 & psen2 MO co-injected embryos, embryos treated with DAPT, or sodium azide, and control embryos. Instead, the distribution of M-ER apposition lengths into different length classes was close to identical. However, this indicates that it is feasible to reproducibly measure M-ER size distributions in zebrafish embryos. While our observations differ from those of murine and human studies, this may be due to differences in cellular differentiation and metabolic state, cell age, or species-specific responses. In particular, by focusing on a presumably proliferative embryonic cell type, we may have selected a cell heavily already reliant on anaerobic glycolysis and less responsive to factors affecting M-ER apposition. Future examination of more differentiated, more secretory cell types may reveal measurable responses of M-ER apposition to environmental and genetic manipulation.
在家族性阿尔茨海默病(AD)中已发现人类基因早老素1(PSEN1)、早老素2(PSEN2)和淀粉样β蛋白前体蛋白(APP)发生突变。在Psen1-/-/Psen2-/-双敲除小鼠胚胎成纤维细胞以及AD患者的成纤维细胞中,线粒体-内质网(M-ER)并置的长度增加。开发一种易于获取、可进行基因操作的体内系统来研究M-ER并置将很有价值,因此我们试图在斑马鱼(Danio rerio)胚胎中操纵M-ER并置长度。我们向受精的斑马鱼卵注射反义吗啉代寡核苷酸(MOs),其可抑制斑马鱼家族性AD基因直系同源物psen1和psen2的表达。此外,我们用DAPT(一种高度特异性的γ-分泌酶抑制剂)或叠氮化钠(以模拟部分缺氧条件)处理斑马鱼胚胎。然后,我们使用电子显微镜分析一种已确定的、可能具有增殖能力的神经细胞类型中的M-ER并置情况。我们的分析表明,在受精后48小时(hpf),共注射psen1和psen2 MO的胚胎、用DAPT或叠氮化钠处理的胚胎与对照胚胎之间,M-ER并置长度没有显著差异。相反,M-ER并置长度在不同长度类别中的分布几乎相同。然而,这表明在斑马鱼胚胎中可重复测量M-ER大小分布是可行的。虽然我们的观察结果与小鼠和人类研究不同,但这可能是由于细胞分化和代谢状态、细胞年龄或物种特异性反应的差异。特别是,通过关注一种可能具有增殖能力的胚胎细胞类型,我们可能选择了一种已经严重依赖无氧糖酵解且对影响M-ER并置的因素反应较小的细胞。未来对更分化、分泌性更强的细胞类型的研究可能会揭示M-ER并置对环境和基因操作的可测量反应。