Department of Integrative Medicine, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
National Drug Clinical Trail Institution, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
Eur J Pharmacol. 2021 Sep 15;907:174296. doi: 10.1016/j.ejphar.2021.174296. Epub 2021 Jul 3.
The effects and underlying mechanisms of mibefradil on gluconeogenesis and glycogenesis were investigated using insulin-resistant HepG2 human hepatocellular carcinoma cells and a mouse model of type 2 diabetes mellitus (T2DM). HepG2 cells were divided into one of four groups: control, palmitate (PA)-induced insulin-resistance (0.25 mM), low-concentration mibefradil (0.025 μM), or high-concentration mibefradil (0.05 μM). Glycogen synthesis and glucose consumption were evaluated in these HepG2 cells, and quantitative polymerase chain reaction (qPCR) and western blotting techniques were used to detect expression of forkhead box O1 (FoxO1), phosphoenolpyruvate carboxykinase (PEPCK), and glucose 6-phosphatase (G6Pase). Intracellular calcium concentrations were determined using Fluo-4 AM, and phosphorylation levels of calmodulin-dependent protein kinase II (CaMKII), protein kinase B (Akt) and FoxO1were detected by western blotting. Immunofluorescence was used for the localization and quantification of FoxO1.In vitro results were verified using a mouse model of T2DM. In HepG2 cells and mouse liver tissues, mibefradil decreased PA-induced cytoplasmic calcium levels and CaMKII phosphorylation, but increased the phosphorylation of Akt and FoxO1, thereby contributing to the cytoplasmic localization of FoxO1. Additionally, mibefradil alleviated PA-induced glucose output and insulin resistance through increased glucose consumption and glycogen synthesis, while decreasing the expression of key gluconeogenesis enzymes, including PEPCK and G6Pase. Mibefradil may help to control blood sugar levels by reducing glucose output and insulin resistance, and the mechanism of action may involve the Ca-CaMKII-dependent Akt/FoxO1 signaling pathway.
米贝地尔对糖异生和糖生成的影响及其潜在机制,使用胰岛素抵抗 HepG2 人肝癌细胞和 2 型糖尿病(T2DM)小鼠模型进行了研究。HepG2 细胞分为四组之一:对照组、棕榈酸(PA)诱导的胰岛素抵抗(0.25 mM)、低浓度米贝地尔(0.025 μM)或高浓度米贝地尔(0.05 μM)。评估这些 HepG2 细胞中的糖原合成和葡萄糖消耗,并使用定量聚合酶链反应(qPCR)和蛋白质印迹技术检测叉头框 O1(FoxO1)、磷酸烯醇丙酮酸羧激酶(PEPCK)和葡萄糖 6-磷酸酶(G6Pase)的表达。使用 Fluo-4 AM 测定细胞内钙浓度,并通过蛋白质印迹检测钙调蛋白依赖性蛋白激酶 II(CaMKII)、蛋白激酶 B(Akt)和 FoxO1 的磷酸化水平。免疫荧光用于 FoxO1 的定位和定量。使用 T2DM 小鼠模型验证了体外结果。在 HepG2 细胞和小鼠肝组织中,米贝地尔降低了 PA 诱导的细胞质钙水平和 CaMKII 磷酸化,但增加了 Akt 和 FoxO1 的磷酸化,从而促进了 FoxO1 的细胞质定位。此外,米贝地尔通过增加葡萄糖消耗和糖原合成来缓解 PA 诱导的葡萄糖输出和胰岛素抵抗,同时降低关键糖异生酶的表达,包括 PEPCK 和 G6Pase。米贝地尔通过降低葡萄糖输出和胰岛素抵抗有助于控制血糖水平,其作用机制可能涉及 Ca-CaMKII 依赖性 Akt/FoxO1 信号通路。