Xia Tian, Sriram Neeraj, Lee Sarah A, Altman Ronni, Urbauer Jeffrey L, Altman Elliot, Eiteman Mark A
College of Engineering, University of Georgia, Athens, GA 30602, USA.
Department of Biology, Middle Tennessee State University, Murfreesboro, TN 37132, USA.
Microbiology (Reading). 2017 Jun;163(6):866-877. doi: 10.1099/mic.0.000480. Epub 2017 Jun 22.
Escherichia coli lacking the glucose phosphotransferase system (PTS), mannose PTS and glucokinase are supposedly unable to grow on glucose as the sole carbon source (Curtis SJ, Epstein W. J Bacteriol 1975;122:1189-1199). We report that W ptsG manZ glk (ALS1406) grows slowly on glucose in media containing glucose with a second carbon source: ALS1406 metabolizes glucose after that other carbon source, including arabinose, fructose, glycerol, succinate or xylose, is exhausted. Galactose is an exception to this rule, as ALS1406 simultaneously consumes both galactose and glucose. The ability of ALS1406 to metabolize glucose in a xylose-glucose mixture was unchanged by an additional knockout in any single gene involved in carbohydrate transport and utilization, including agp (periplasmic glucose-1-phosphatase), galP (galactose permease), xylA (xylose isomerase), alsK (allose kinase), crr (glucose PTS enzyme IIA), galK (galactose kinase), mak (mannokinase), malE (maltose transporter), malX (maltose PTS enzyme IIBC), mglB (methyl-galactose transporter subunit), nagE (N-acetyl glucosamine PTS enzyme IICBA), nanK (N-acetyl mannosamine kinase) or pgm (phosphoglucose mutase). Glucose metabolism was only blocked by the deletion of two metabolic genes, pgi (phosphoglucose isomerase) and zwf (glucose-6-phosphate 1-dehydrogenase), which prevents the entry of glucose-6-phosphate into the pentose phosphate and Embden-Meyerhof-Parnas pathways. Carbon-limited steady-state studies demonstrated that xylose must be sub-saturating for glucose to be metabolized, while nitrogen-limited studies showed that xylose is partly converted to glucose when xylose is in excess. Under transient conditions, ALS1406 converts almost 25 % (mass) xylose into glucose as a result of reversible transketolase and transaldolase and the re-entry of carbon into the pentose phosphate pathway via glucose-6-phosphate 1-dehydrogenase.
缺乏葡萄糖磷酸转移酶系统(PTS)、甘露糖PTS和葡萄糖激酶的大肠杆菌据推测无法以葡萄糖作为唯一碳源生长(柯蒂斯·SJ,爱泼斯坦·W。《细菌学杂志》1975年;122:1189 - 1199)。我们报告称,W ptsG manZ glk(ALS1406)在含有葡萄糖及第二种碳源的培养基中能在葡萄糖上缓慢生长:ALS1406在包括阿拉伯糖、果糖、甘油、琥珀酸或木糖在内的其他碳源耗尽后代谢葡萄糖。半乳糖是此规则的一个例外,因为ALS1406同时消耗半乳糖和葡萄糖。在木糖 - 葡萄糖混合物中,ALS1406代谢葡萄糖的能力不会因参与碳水化合物运输和利用的任何单个基因(包括agp(周质葡萄糖 - 1 - 磷酸酶)、galP(半乳糖通透酶)、xylA(木糖异构酶)、alsK(阿洛糖激酶)、crr(葡萄糖PTS酶IIA)、galK(半乳糖激酶)、mak(甘露糖激酶)、malE(麦芽糖转运蛋白)、malX(麦芽糖PTS酶IIBC)、mglB(甲基 - 半乳糖转运蛋白亚基)、nagE(N - 乙酰葡糖胺PTS酶IICBA)、nanK(N - 乙酰甘露糖胺激酶)或pgm(磷酸葡萄糖变位酶))的额外敲除而改变。只有通过缺失两个代谢基因pgi(磷酸葡萄糖异构酶)和zwf(葡萄糖 - 6 - 磷酸1 - 脱氢酶)才能阻断葡萄糖代谢,这会阻止葡萄糖 - 6 - 磷酸进入磷酸戊糖途径和糖酵解途径。碳限制稳态研究表明,木糖必须处于亚饱和状态,葡萄糖才能被代谢,而氮限制研究表明,当木糖过量时,木糖会部分转化为葡萄糖。在瞬态条件下,由于可逆的转酮醇酶和转醛醇酶以及碳通过葡萄糖 - 6 - 磷酸1 - 脱氢酶重新进入磷酸戊糖途径,ALS1406能将近25%(质量)的木糖转化为葡萄糖。