Department of Energy Engineering, School of Energy and Chemical Engineering, Low Dimensional Carbon Materials Center, Perovtronics Research Center, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea.
ACS Nano. 2017 Jul 25;11(7):7409-7415. doi: 10.1021/acsnano.7b03684. Epub 2017 Jun 27.
Operational stability and high performance are the most critical issues that must be addressed in order to propel and advance the current polymer solar cell (PSC) technology to the next level, such as manufacturing and mass production. Herein, we report a high power conversion efficiency (PCE) of 11.2%, together with an excellent device stability in PTB7-Th:PCBM-based PSCs in the inverted structure by introducing the n-type P(NDI2OD-T2) macromolecular additive (>75% PCE retention at high temperature up to 120 °C, >97% PCE retention after 6 months in inert conditions, >93% PCE retention after 2 months in air with encapsulation, and >80% PCE retention after 140 h in air without encapsulation). The PCE is the highest value ever reported in the single-junction systems based on the PTB7 family and is also comparable to the previously reported highest PCE of inverted PSCs. These promising results are attributed to the efficient optimization and stabilization of the blend film morphology in the photoactive layer, achieved using the P(NDI2OD-T2) additive. From the perspective of manufacturing, our studies demonstrate a promising pathway for fabricating low-cost PSCs with high efficiency as well as long-term stability.
为了推动和提升当前聚合物太阳能电池(PSC)技术至下一水平,如制造和大规模生产,其操作稳定性和高性能是必须解决的最关键问题。在此,我们报道了在倒置结构中基于 PTB7-Th:PCBM 的 PSCs 中通过引入 n 型 P(NDI2OD-T2) 高分子添加剂,实现了 11.2% 的高光能量转换效率(PCE),同时具有出色的器件稳定性(在 120°C 高温下保持 75%以上的 PCE,惰性条件下 6 个月后保持 97%以上的 PCE,封装后 2 个月在空气中保持 93%以上的 PCE,无封装下 140 小时后保持 80%以上的 PCE)。该 PCE 值是基于 PTB7 家族的单结系统中报道的最高值,与之前报道的倒置 PSCs 的最高 PCE 值相当。这些有前景的结果归因于使用 P(NDI2OD-T2)添加剂对光活性层中共混膜形态进行了有效的优化和稳定。从制造的角度来看,我们的研究表明了一种有前途的途径,可以制造高效率和长期稳定性的低成本 PSCs。