Suppr超能文献

联合时移磁共振成像和建模研究胶体在多孔介质中的沉积和运移。

Combined time-lapse magnetic resonance imaging and modeling to investigate colloid deposition and transport in porous media.

机构信息

EMMAH, INRA, Université d'Avignon et des Pays de Vaucluse, 84000 Avignon, France; Université Paris-Est, Laboratoire Navier (ENPC-IFSTTAR-CNRS), 77420 Champs-sur-Marne, France.

Université Paris-Est, Laboratoire Navier (ENPC-IFSTTAR-CNRS), 77420 Champs-sur-Marne, France.

出版信息

Water Res. 2017 Oct 15;123:12-20. doi: 10.1016/j.watres.2017.06.035. Epub 2017 Jun 14.

Abstract

Colloidal particles can act as vectors of adsorbed pollutants in the subsurface, or be themselves pollutants. They can reach the aquifer and impair groundwater quality. The mechanisms of colloid transport and deposition are often studied in columns filled with saturated porous media. Time-lapse profiles of colloid concentration inside the columns have occasionally been derived from magnetic resonance imaging (MRI) data recorded in transport experiments. These profiles are valuable, in addition to particle breakthrough curves (BTCs), for testing and improving colloid transport models. We show that concentrations could not be simply computed from MRI data when both deposited and suspended colloids contributed to the signal. We propose a generic method whereby these data can still be used to quantitatively appraise colloid transport models. It uses the modeled suspended and deposited particle concentrations to compute modeled MRI data that are compared to the experimental data. We tested this method by performing transport experiments with sorbing colloids in sand, and assessed for the first time the capacity of the model calibrated from BTCs to reproduce the MRI data. Interestingly, the dispersion coefficient and deposition rate calibrated from the BTC were respectively overestimated and underestimated compared with those calibrated from the MRI data, suggesting that these quantities, when determined from BTCs, need to be interpreted with care. In a broader perspective, we consider that combining MRI and modeling offers great potential for the quantitative analysis of complex MRI data recorded during transport experiments in complex environmentally relevant porous media, and can help improve our understanding of the fate of colloids and solutes, first in these media, and later in soils.

摘要

胶体颗粒可以作为污染物在地下水中的吸附载体,或者本身就是污染物。它们可以到达含水层并损害地下水质量。胶体运移和沉积的机制通常在充满饱和多孔介质的柱体中进行研究。在运移实验中记录的磁共振成像 (MRI) 数据偶尔会衍生出柱内胶体浓度的时移剖面。这些剖面除了颗粒穿透曲线 (BTC) 之外,对于测试和改进胶体运移模型也很有价值。我们表明,当沉积胶体和悬浮胶体都对信号有贡献时,浓度不能简单地从 MRI 数据中计算出来。我们提出了一种通用方法,即使在这种情况下,这些数据仍可用于定量评估胶体运移模型。它使用模型化的悬浮和沉积颗粒浓度来计算模型化的 MRI 数据,然后将这些数据与实验数据进行比较。我们通过在沙中进行带有吸附胶体的运移实验来测试这种方法,并首次评估了从 BTC 校准的模型再现 MRI 数据的能力。有趣的是,与从 MRI 数据校准的参数相比,从 BTC 校准的弥散系数和沉积速率分别被高估和低估,这表明当从 BTC 确定这些参数时,需要谨慎解释。从更广泛的角度来看,我们认为将 MRI 和建模结合起来,为在复杂环境相关多孔介质中进行的运移实验中记录的复杂 MRI 数据的定量分析提供了巨大的潜力,并且可以帮助我们更好地了解胶体和溶质的命运,首先是在这些介质中,然后是在土壤中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验