Suppr超能文献

一种新型快速基于张量的图像恢复预处理子。

A Novel Fast Tensor-Based Preconditioner for Image Restoration.

出版信息

IEEE Trans Image Process. 2017 Sep;26(9):4499-4508. doi: 10.1109/TIP.2017.2716840. Epub 2017 Jun 16.

Abstract

Image restoration is one of the main parts of image processing. Mathematically, this problem can be modeled as a large-scale structured ill-posed linear system. Ill-posedness of this problem results in low-convergence rate of iterative solvers. For speeding up the convergence, preconditioning usually is used. Despite the existing preconditioners for image restoration, which are constructed based on approximations of the blurring matrix, in this paper, we propose a novel preconditioner with a different viewpoint. Here, we show that image restoration problem can be modeled as a tensor contractive linear equation. This modeling enables us to propose a new preconditioner based on an approximation of the blurring tensor operator. Due to the particular structure of the blurring tensor for zero boundaries, we show that the truncated higher order singular value decomposition of the blurring tensor is obtained very fast and so could be used as a preconditioner. Experimental results confirm the efficiency of this new preconditioner in image restoration and its outperformance in comparison with the other well-known preconditioners.

摘要

图像恢复是图像处理的主要部分之一。从数学上讲,这个问题可以建模为一个大规模的结构不适定线性系统。这个问题的不适定性导致迭代求解器的收敛速度较慢。为了加快收敛速度,通常使用预处理。尽管存在基于模糊矩阵近似的图像恢复的预处理,但在本文中,我们提出了一种新的预处理方法,具有不同的观点。在这里,我们表明图像恢复问题可以建模为张量压缩线性方程。这种建模使我们能够提出一种基于模糊张量算子近似的新预处理方法。由于零边界模糊张量的特殊结构,我们表明模糊张量的截断高阶奇异值分解可以非常快速地获得,因此可以用作预处理。实验结果证实了这种新预处理方法在图像恢复中的有效性及其与其他著名预处理方法相比的优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验