Department of Chemistry, University of Puerto Rico , Río Piedras Campus, Río Piedras, Puerto Rico 00931, United States.
VA Caribbean Healthcare System , 10 Casia Street, San Juan, Puerto Rico 00921, United States.
Inorg Chem. 2017 Jul 17;56(14):7788-7802. doi: 10.1021/acs.inorgchem.7b00542. Epub 2017 Jun 23.
The recent X-ray structure of titanium(IV)-bound human serum transferrin (STf) exhibiting citrate as a synergistic anion reveals a difference in Ti(IV) coordination versus iron(III), the metal endogenously delivered by the protein to cells. This finding enriches our bioinspired drug design strategy for Ti(IV)-based anticancer therapeutics, which applies a family of Fe(III) chelators termed chemical transferrin mimetic (cTfm) ligands to inhibit Fe bioavailability in cancer cells. Deferasirox, a drug used for iron overload disease, is a cTfm ligand that models STf coordination to Fe(III), favoring Fe(III) binding versus Ti(IV). This metal affinity preference drives deferasirox to facilitate the release of cytotoxic Ti(IV) intracellularly in exchange for Fe(III). An aqueous speciation study performed by potentiometric titration from pH 4 to 8 with micromolar levels of Ti(IV) deferasirox at a 1:2 ratio reveals exclusively Ti(deferasirox) in solution. The predominant complex at pH 7.4, [Ti(deferasirox)], exhibits the one of the highest aqueous stabilities observed for a potent cytotoxic Ti(IV) species, demonstrating little dissociation even after 1 month in cell culture media. UV-vis and H NMR studies show that the stability is unaffected by the presence of biomolecular Ti(IV) binders such as citrate, STf, and albumin, which have been shown to induce dissociation or regulate cellular uptake and can alter the activity of other antiproliferative Ti(IV) complexes. Kinetic studies on [Ti(deferasirox)] transmetalation with Fe(III) show that a labile Fe(III) source is required to induce this process. The initial step of this process occurs on the time scale of minutes, and equilibrium for the complete transmetalation is reached on a time scale of hours to a day. This work reveals a mechanism to deliver Ti(IV) compounds into cells and trigger Ti(IV) release by a labile Fe(III) species. Cellular studies including other cTfm ligands confirm the Fe(III) depletion mechanism of these compounds and show their ability to induce early and late apoptosis.
最近,人血清转铁蛋白(STf)结合钛(IV)的 X 射线结构显示,柠檬酸作为协同阴离子,其钛(IV)配位与蛋白内源性递送至细胞的铁(III)不同。这一发现丰富了我们基于钛(IV)的抗癌治疗的仿生药物设计策略,该策略应用了一类被称为化学转铁蛋白模拟物(cTfm)配体的 Fe(III)螯合剂,以抑制癌细胞中的铁生物利用度。地拉罗司是一种用于铁过载疾病的药物,是一种 cTfm 配体,模拟 STf 与 Fe(III)的配位,有利于 Fe(III)结合而非 Ti(IV)。这种金属亲和性偏好促使地拉罗司促进细胞内细胞毒性 Ti(IV)的释放,以换取 Fe(III)。通过在 pH4 至 8 之间进行 pH 滴定的微量 Ti(IV)地拉罗司(1:2 比)的溶液状态研究,发现溶液中仅存在 Ti(地拉罗司)。在 pH7.4 时,主要配合物[Ti(地拉罗司)],表现出观察到的最稳定的 Ti(IV)物种之一,即使在细胞培养基中放置一个月后也几乎没有解离。UV-vis 和 H NMR 研究表明,稳定性不受生物分子 Ti(IV)结合物如柠檬酸、STf 和白蛋白的存在影响,这些结合物已被证明会诱导解离或调节细胞摄取,并可能改变其他增殖抑制 Ti(IV)配合物的活性。[Ti(地拉罗司)]与 Fe(III)的转金属反应动力学研究表明,需要不稳定的 Fe(III)源来诱导此过程。该过程的初始步骤发生在几分钟的时间尺度内,而完全转金属化的平衡在几小时至一天的时间尺度内达到。这项工作揭示了一种将 Ti(IV)化合物递送至细胞并通过不稳定的 Fe(III)物种触发 Ti(IV)释放的机制。包括其他 cTfm 配体在内的细胞研究证实了这些化合物的 Fe(III)耗竭机制,并显示了它们诱导早期和晚期细胞凋亡的能力。